吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (6): 1624-1633.doi: 10.13229/j.cnki.jdxbgxb.20220975
• 交通运输工程·土木工程 • 上一篇
Cheng CHEN1(),Pei-xin SHI1(),Peng-jiao JIA1,2,Man-man DONG3
摘要:
提出了MIC-K-median-LSTM(MK-LSTM)算法,用于对盾构掘进过程进行参数相关性分析和结构变形预测。首先,运用改进的MIC(MK)算法对涉及盾构掘进过程中的各参数与结构变形进行相关性分析;然后,在得到相关系数的基础上提出输入参数的修正方法;最后,通过LSTM模型对不同维度输入参数的预测效果进行分析,确定合理的输入参数维度。结果表明:盾构参数对既有结构变形的影响大于土体参数;MK算法可以有效降低计算复杂度和减小噪声对数据的影响,基于参数相关系数的数据前处理方法有利于提高模型的预测精度;MK-LSTM可以有效预测结构随时间的变形规律,考虑数据维度对预测精度的提升效果和计算效率的影响,进行实际工程预测时可以根据参数相关性大小进行维度删减。
中图分类号:
1 | Wang L T, Yang X, Gong G F, et al. Pose and trajectory control of shield tunneling machine in complicated stratum[J]. Automation in Construction, 2018,93: 192-199. |
2 | Huo J, Xu Z, Meng Z, et al. Coupled modeling and dynamic characteristic of TBM cutterhead system under uncertain factors[J]. Mechanical Systems and Signal Processing, 2020, 140: No.106664. |
3 | 崔国华, 王国强, 王继新, 等. 全断面盾构掘进机切削刀具的计算力学模型求解[J]. 吉林大学学报: 工学版, 2008, 38(): 139-143. |
Cui Guo-hua, Wang Guo-qiang, Wang Ji-xin, et al. Cutting dynamic model for cutters of shield machine under soft soil[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(Sup.2): 139-143. | |
4 | Deng K, Tang X, Wang L, et al. On the analysis of force transmission performance for the thrust systems of shield tunneling machines[C]∥International Conference on Intelligent Robotics and Applications.Berlin: Springer-Verlag, 2009. |
5 | 朱合华, 丁文其, 乔亚飞, 等. 盾构隧道微扰动施工控制技术体系及其应用[J]. 岩土工程学报, 2014,36(11): 1983-1993. |
Zhu He-hua, Ding Wen-qi, Qiao Ya-fei, et al. Micro-disturbed construction control technology system for shield driven tunnels and its application [J]. Chinese Journal of Geotechnical Engineering, 2014,36(11): 1983-1993. | |
6 | 张顶立, 曹利强, 房倩. 城市隧道施工的环境力学响应预测及动态控制[J]. 北京交通大学学报, 2021,45(4): 1-8. |
Zhang Ding-li, Cao Li-qiang, Fang Qian. Environmental mechanical response prediction and in-process control of urban tunnel construction[J]. Journal of Beijing Jiaotong University, 2021, 45(4): 1-8. | |
7 | 高利宏. 新建地铁穿越既有地铁引起结构变形预测[J]. 市政技术, 2020, 38(4): 146-148, 152. |
Gao Li-hong. Prediction of structural deformation caused by a new subway crossing existing subway[J]. Journal of Municipal Technology, 2020, 38(4): 146-148, 152. | |
8 | 张成平, 张顶立, 王梦恕. 大断面隧道施工引起的上覆地铁隧道结构变形分析[J]. 岩土工程学报,2009, 31(5): 805-810. |
Zhang Cheng-ping, Zhang Ding-li, Wang Meng-shu. Structural deformation of overlying subway tunnels induced by tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 805-810. | |
9 | 刘栋. 深度学习框架下时空关联的基坑变形预测方法研究[D]. 泰安: 山东农业大学水利土木工程学院,2022. |
Liu Dong. Research on prediction method of foundation pit deformation based on spatio-temporal correlation under deep learning framework [D].Tai´an:College of Water Conservancy and Civil Engineering,Shandong Agricultural University, 2022. | |
10 | 李洛宾, 龚晓南, 甘晓露, 等. 基于循环神经网络的盾构隧道引发地面最大沉降预测[J]. 土木工程学报,2020, 53(): 13-19. |
Li Luo-bin, Gong Xiao-nan, Gan Xiao-lu, et al. Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network [J]. China Civil Engineering Journal, 2020, 53(Sup.1): 13-19. | |
11 | Chen R P, Zhang P, Kang X, et al. Prediction of maximum surface settlement caused by earth pressure balance (EPB) shield tunneling with ANN methods [J]. Soils and Foundations, 2019, 59(2): 284-295. |
12 | 陈仁朋, 戴田, 张品, 等. 基于机器学习算法的盾构掘进地表沉降预测方法[J]. 湖南大学学报: 自然科学版, 2021, 48(7): 111-118. |
Chen Ren-peng, Dai Tian, Zhang Pin, et al. Prediction method of tunneling-induced ground settlement using machine learning algorithms[J]. Journal of Hunan University(Natural Sciences), 2021, 48(7):111-118. | |
13 | 孙捷城, 王国富, 路林海, 等. 厚冲积地层盾构掘进参数设定及地表变形规律研究[J]. 防灾减灾工程学报, 2018, 38(3): 487-497. |
Sun Jie-cheng, Wang Guo-fu, Lu Lin-hai, et al. Study on parameters setting of EPB shield driving and laws of surface deformation in thick alluvial clay[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 487-497. | |
14 | 周振梁, 谭忠盛, 李宗林, 等. 一种基于数据挖掘的掘进速度预测模型[J]. 应用基础与工程科学学报,2021, 29(5): 1201-1219. |
Zhou Zhen-liang, Tan Zhong-sheng, Li Zong-lin, et al. A data mining based prediction model for penetration rate[J]. Journal of Basic Science and Engineering, 2021, 29(5): 1201-1219. | |
15 | 裴浩东, 叶社保, 杨平, 等. 软土地层盾构掘进参数分析及掘进速度预测[J]. 郑州大学学报: 工学版, 2022, 11(26): 1-8. |
Pei Hao-dong, Ye She-bao, Yang Ping, et al. Analysis of boring parameters of shield in soft soil strata and prediction of driving speed[J]. Journal of Zhengzhou University (Engineering Science), 2022, 11(26):1-8. | |
16 | Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524. |
17 | 邵福波. 最大信息系数改进算法及其在铁路事故分析中的应用[D]. 北京: 北京交通大学交通运输学院,2016. |
Shao Fu-bo. The improved algorithm of the maximal information coefficient and its applications in railway accident analysis[D]. Beijing: School of Traffic and Tansportation, Beijing Jiaotong University, 2016. | |
18 | Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms[M]. 3rd ed. Cambridge: MIT Press, 2009. |
19 | Zhang D M, Zhang J Z, Huang H W, et al. Machine learning-based prediction of soil compression modulus with application of 1D settlement[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(6): 430-444. |
20 | Shao H D, Zhao H W, Jiang H K, et al. An enhancement deep feature fusion method for rotating machinery fault diagnosis[J]. Knowledge-Based Systems,2016, 119: 200-220. |
21 | Zhang W, Zhang R, Wu C, et al. State-of-the-art review of soft computing applications in underground excavations[J]. Geoscience Frontiers, 2020, 11(4): 1095-1106. |
22 | Koo T K, Li M Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research[J]. Journal of Chiropractic Medicine, 2016,15(2): 155-163. |
23 | 李增良. 基于MIC-LSTM的盾构施工地表变形动态预测[J]. 隧道建设, 2021, 41(2): 199-205. |
LI Zeng-liang. Dynamic prediction of surface deformation induced by shield tunneling based on maximal information coefficient-long short-term memory[J]. Tunnel Construction, 2021, 41(2): 199-205. | |
24 | Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets, Science,2011, 334(6062): 1518-1524. |
[1] | 邸振勇,杨新辉. 地震后建筑结构层间变形特征分布[J]. 吉林大学学报(工学版), 2024, 54(5): 1377-1384. |
[2] | 娄淑梅,李一明,李鑫,陈鹏,白雪峰,程宝嘉. 基于BP神经网络和Arrhenius本构模型的石墨烯/7075复合材料热变形行为[J]. 吉林大学学报(工学版), 2024, 54(5): 1237-1245. |
[3] | 万铜铜,汪海年,郑文华,冯珀楠,陈玉,张琛. 级配碎石层协调沥青混合料层温度收缩变形行为[J]. 吉林大学学报(工学版), 2024, 54(4): 1045-1057. |
[4] | 何银水,肖贺,罗沧海,张宇,余卓骅,袁海涛. 基于层次分析过程的厚板T形接头弧焊焊接位置自主决策[J]. 吉林大学学报(工学版), 2024, 54(3): 657-662. |
[5] | 付忠良,陈晓清,任伟,姚宇. 带学习过程的随机K最近邻算法[J]. 吉林大学学报(工学版), 2024, 54(1): 209-220. |
[6] | 李义,吕晨阳,梁继才,梁策. 不规则Y形铝型材多点拉弯成形截面变形分析[J]. 吉林大学学报(工学版), 2024, 54(1): 105-113. |
[7] | 周晓,梁燚杰,奚中轩,王宇涛. 白车身B柱焊接变形模拟及预变形控制方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2212-2218. |
[8] | 耿庆田,刘植,李清亮,于繁华,李晓宁. 基于一种深度学习模型的土壤湿度预测[J]. 吉林大学学报(工学版), 2023, 53(8): 2430-2436. |
[9] | 张哲,付伟,张军辉,黄超. 循环荷载下冻融路基黏土长期塑性行为[J]. 吉林大学学报(工学版), 2023, 53(6): 1790-1798. |
[10] | 潘恒彦,张文会,梁婷婷,彭志鹏,高维,王永岗. 基于MIMIC与机器学习的出租车驾驶员交通事故诱因分析[J]. 吉林大学学报(工学版), 2023, 53(2): 457-467. |
[11] | 孙琪凯,张楠,刘潇,周子骥. 基于Timoshenko梁理论的钢-混组合梁动力折减系数[J]. 吉林大学学报(工学版), 2023, 53(2): 488-495. |
[12] | 袁伟,袁小慧,高岩,李坤宸,赵登峰,刘朝辉. 基于自然驾驶数据的电动公交踏板误操作辨识方法[J]. 吉林大学学报(工学版), 2023, 53(12): 3342-3350. |
[13] | 梁策,黄富雷,梁继才,李义. 日字形防护梁绕弯成形形变数值模拟[J]. 吉林大学学报(工学版), 2023, 53(12): 3397-3403. |
[14] | 周丰丰,颜振炜. 基于混合特征的特征选择神经肽预测模型[J]. 吉林大学学报(工学版), 2023, 53(11): 3238-3245. |
[15] | 孙舒杨,程玮斌,张浩桢,邓向萍,齐红. 基于深度学习的两阶段实时显式拓扑优化方法[J]. 吉林大学学报(工学版), 2023, 53(10): 2942-2951. |
|