吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (9): 2588-2599.doi: 10.13229/j.cnki.jdxbgxb.20221413

• 交通运输工程·土木工程 • 上一篇    

基于时空序列相似性的城轨乘客出行模式识别

张娜1(),陈峰2(),王剑坡3,朱亚迪2   

  1. 1.西安建筑科技大学 资源工程学院,西安 710055
    2.北京交通大学 土木建筑工程学院,北京 100044
    3.长安大学 运输工程学院,西安 710064
  • 收稿日期:2022-11-08 出版日期:2024-09-01 发布日期:2024-10-28
  • 通讯作者: 陈峰 E-mail:na_zhang@xauat.edu.cn;fengchen@bjtu.edu.cn
  • 作者简介:张娜(1991-),女,讲师,博士.研究方向:城市轨道交通乘客出行行为.E-mail:na_zhang@xauat.edu.cn
  • 基金资助:
    国家自然科学基金项目(52202385)

Recognition of travel patterns for urban rail transit passengers based on spatiotemporal sequence similarity

Na ZHANG1(),Feng CHEN2(),Jian-po WANG3,Ya-di ZHU2   

  1. 1.School of Resources Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China
    2.School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China
    3.School of Transportation Engineering,Chang'an University,Xi'an 710064,China
  • Received:2022-11-08 Online:2024-09-01 Published:2024-10-28
  • Contact: Feng CHEN E-mail:na_zhang@xauat.edu.cn;fengchen@bjtu.edu.cn

摘要:

基于轨道交通智能卡数据,提出一种通过建模个体的时空序列识别出行模式的方法。首先,提取乘客个体访问的所有站点,以站间出行频次、站间距离和站点活动时长计算站点的相似性,利用层次聚类算法划分该个体的主要空间活动区域。其次,基于个体的出行次序推断时空序列,该序列为一组表征时空状态的离散值,依次采用PCA-KL和K-Means++提取相似性序列结构以识别乘客出行模式。最后,以西安某月的轨道交通智能卡数据为例,识别其乘客出行模式。结果表明,复杂的客流具有5种出行模式,其中3种典型模式宏观上属通勤出行,客流占比79%。可见,本文基于个体时空序列相似性的模式识别充分体现了研究方法的特殊性和通用性,针对不同城市操作性强。

关键词: 交通运输系统工程, 城市轨道交通, 智能卡数据, 时空序列, 乘客出行模式, 通勤出行

Abstract:

Based on smart card data (SCD) of urban rail transit, a method was proposed to identify travel patterns by modeling the spatio-temporal sequences of individuals. Firstly, all stations visited by a passenger individual were extracted, and the similarity of stations was calculated in terms of inter-station travel frequency, inter-station distance, and the station activity duration, thus the main spatial activity areas of this individual were classified using a hierarchical clustering algorithm. Secondly, the spatio-temporal sequence was inferred based on the travel order of the individual, which is a set of discrete values characterizing the spatio-temporal state. PCA-KL and K-Means++ were used to extract the similarity sequence structure to identify passenger travel patterns. Finally, using one-month SCD as an example to identify passenger travel patterns for Xi'an rail transit. The results show that the complex passenger flow has five travel patterns, among which three typical travel patterns are macroscopic commuter travel behavior, accounting for 79% of the total passenger flow. Thus, the pattern identified based on the similarity of individuals' travel spatiotemporal sequences fully reflects the particularity and universality of the research method and it is highly operable for different cities.

Key words: transportation system engineering, urban rail transit, smart card data, spatiotemporal sequence, passenger travel pattern, commuting travel

中图分类号: 

  • U491.1

表1

某持卡者连续发生的轨道交通出行记录"

交易时间票卡ID

进站

时间

进站ID

出站

时间

出站ID
20181112710001***142215261144134249
20181112710001***173457333175812261
20181113710001***081228261083526245
20181113710001***144350245150500261
20181116710001***114607261121415241
20181116710001***173339241175452227
20181216710001***145417261151257249
20181216710001***171938249173958261

图1

方法流程图"

图2

个体起讫站点聚类示例"

图3

基于出行记录的个体时空序列推断流程"

图4

可视化乘客某月的时空序列"

图5

样本点邻近域与参数特征向量的映射"

图6

站点不同聚类数目下的乘客人数占比"

表2

不同空间区域平均活动时长"

项目空间区域状态编号其他状态编号
12345670-1-2
平均τ/%37.316.55.74.13.50.90.6-29.4-

图7

子样本间相应的平均相关度"

表3

K取不同值时的指标评价"

指标K
2345678910
DBI3.062.6192.3242.1642.1012.0211.9481.9351.816
CH0.0910.1090.1130.1200.1180.1170.1160.1130.114
K111213141516171819
DBI1.9271.8921.8861.8661.8731.8811.8531.8421.851
CH0.1140.1120.1050.1070.1080.1020.1020.1010.099

图8

第1类出行模式的序列结构"

图9

第2类出行模式的序列结构"

图10

第3类出行模式的序列结构"

图11

其他两类出行模式的序列结构"

表4

出行模式分类统计"

类别名称

构成

集群

乘客量占比/%出行量占比/%时空特征出行特征总体描述
模式1固定时空强化出行1、418.521.5出行频次最高、时间稳定,典型居住地、工作地属通勤行为
模式2固定时空常规出行3、7、835.841.8出行频次稳定、时间稳定,典型居住地、工作地属通勤行为
模式3弹性时间无典型工作地出行2、1016.715.7出行频次不稳定、时间灵活;典型居住地、无典型工作地属通勤行为
模式4偶发性无规则出行5、611.611.7城轨辅助出行,无法判断非通勤行为
模式5随机时空出行917.49.3出行频次与时间均随机;无典型居住地、工作地非通勤行为
1 赵娟娟. 城市轨道交通乘客时空出行模式挖掘及动态客流分析[D].深圳:中国科学院大学深圳先进技术研究院,2017.
Zhao Juan-juan. Spatio-temporal travel pattern mining and dynamic passenger flow analysis in urban rail transit system[D]. Shenzhen: Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, 2017.
2 朱亚迪,陈峰,王子甲,等.基于概率图模型的乘客出行链提取方法[J].吉林大学学报:工学版,2019,49(1):60-65.
Zhu Ya-di, Chen Feng, Wang Zi-jia, et al. Passengers' trip chains extraction method based on probabilistic graph model[J]. Journal of Jilin University (Engineering and Technology Edition), 2019,49(1):60-65.
3 Ma X L, Wu Y J, Wang Y H, et al. Mining smart card data for transit riders' travel patterns[J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 1-12.
4 Cui Z Y, Long Y. Perspectives on stability and mobility of transit passenger's travel behavior through smart card data[J]. IET Intelligent Transport Systems, 2019, 13(12):1761-1769.
5 彭飞,宋国华,朱珊.城市公共交通常乘客通勤出行提取方法[J].交通运输系统工程与信息,2021,21(2):158-165, 172.
Peng Fei, Song Guo-hua, Zhu Shan. A method for extracting commuting trips of frequent passengers in urban public transportation[J]. Journal of Transportation Systems Engineering and Information Technology, 2021,21(2):158-165, 172.
6 周航,陈学武.集时空聚类和指标筛选的公共交通通勤者识别[J].交通运输工程与信息学报,2022,20(1):89-97.
Zhou Hang, Chen Xue-wu. Public transportation commuter identification based on spatiotemporal clustering and index screening[J]. Journal of Transportation Engineering and Information, 2022,20(1):89-97.
7 Hagerstraand T. What about people in regional science [J]. Papers in Regional Science,1970, 24(1): 7-24.
8 Langlois G G, Koutsopoulos H N, Zhao J. Inferring patterns in the multi-week activity sequences of public transport users[J]. Transportation Research Part C, 2016, 64:1-16.
9 刘永鑫.基于多源数据融合的城市公交系统乘客出行模式挖掘及其应用研究[D].广州: 华南理工大学土木与交通学院, 2018.
Liu Yong-xin. Study on key technologies of transit passengers' travel pattern mining and applications based on multiple sources of data[D]. Guangzhou: School of Civil Engineering & Transportation, South China University of Technology, 2018.
10 Kieu L M, Bhaskar A, Chung E. Passenger segmentation using smart card data[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3):1537-1548.
11 姚志刚,杨杰,王元庆.基于个体出行模式的公交乘客活动规律性度量[J].北京交通大学学报, 2022, 46(4): 68-75.
Yao Zhi-gang, Yang Jie, Wang Yuan-qing. Measurement of public transport passenger behavior regularity based on individual travel pattern[J]. Journal of Beijing Jiaotong University, 2022, 46(4): 68-75.
12 Joh C H, Arentze T, Timmermans H. Pattern recognition in complex activity travel patterns: comparison of Euclidean distance,signal-processing theoretical, and multidimensional sequence alignment methods[J]. Transportation Research Record, 2001, 1752(1):16-22.
13 Day W H E, Edelsbrunner H. Efficient algorithms for agglomerative hierarchical clustering methods[J]. Journal of Classification, 1984, 1: 7-24.
14 Ortega-Tong M A. Classification of London's public transport users using smart card data[D]. Cambridge, Massachusetts: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 2013.
15 Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
16 Tenenbaum J B, Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
17 Levada A L M. PCA-KL: a parametric dimensionality reduction approach for unsupervised metric learning[J]. Advances in Data Analysis and Classification, 2021, 15(4): 829-868.
18 Pham D T, Dimov S S, Nguyen C D. Selection of K in K-means clustering[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2005, 219(1): 103-119.
19 2022年度中国主要城市共享单车/电单车骑行报告[R].北京: 中国城市规划设计研究院, 2022.
2022 Annual report on sharing bikes/motorcycle riding in major Chinese cities[R].Beijing: China Academy of Urban Planning & Design, 2022.
20 周世兵,徐振源,唐旭清. K-means算法最佳聚类数确定方法[J].计算机应用, 2010, 30(8): 1995-1998.
Zhou Shi-bing, Xu Zhen-yuan, Tang Xu-qing. Method for determining optimal number of clusters in K-means clustering algorithm[J]. Journal of Computer Applications, 2010, 30(8): 1995-1998.
21 Day W H E, Edelsbrunner H. Efficient algorithms for agglomerative hierarchical clustering methods[J]. Journal of Classification, 1984, 1(1): 7-24.
[1] 周锡浈,宫贺,李敦敦,季彦婕,严杰. 建成环境对路内停车泊位使用率的非线性影响模型[J]. 吉林大学学报(工学版), 2024, 54(9): 2520-2530.
[2] 严利鑫,曾涛,贺宜,郭军华,胡鑫辉. 共驾型智能车辆人机接管行为序列编码与解析[J]. 吉林大学学报(工学版), 2024, 54(9): 2547-2556.
[3] 曲昭伟,李霖,陈永恒,吴场建. 长区间掉头车辆特性分析及其安全评价[J]. 吉林大学学报(工学版), 2024, 54(8): 2206-2213.
[4] 何永明,权聪,魏堃,冯佳,万亚楠,陈世升. 超高速公路车路协同路侧单元感知融合方法[J]. 吉林大学学报(工学版), 2024, 54(7): 1923-1934.
[5] 马书红,廖国美,黄岩,张俊杰. 建成环境对交通小区地铁通勤客流的异质性影响[J]. 吉林大学学报(工学版), 2024, 54(7): 1913-1922.
[6] 程国柱,盛林,王浩宇,冯天军. 考虑右转车二次冲突的信号交叉口行人过街安全评价方法[J]. 吉林大学学报(工学版), 2024, 54(7): 1903-1912.
[7] 秦雅琴,钱正富,谢济铭. 协同换道避障模型和轨迹数据驱动的车辆协同避障策略[J]. 吉林大学学报(工学版), 2024, 54(5): 1311-1322.
[8] 张明业,杨敏,黎彧,黄世玉,李清韵. 考虑有序充电策略的多车型电动公交调度优化[J]. 吉林大学学报(工学版), 2024, 54(5): 1293-1301.
[9] 马潇驰,陆建. 基于基因表达式编程的高架道路事故实时预测[J]. 吉林大学学报(工学版), 2024, 54(3): 719-726.
[10] 严利鑫,冯进培,郭军华,龚毅轲. 不同险态情景下共驾型智能车辆接管行为特征分析[J]. 吉林大学学报(工学版), 2024, 54(3): 683-691.
[11] 曲大义,张可琨,顾原,王韬,宋慧,戴守晨. 自动驾驶车辆换道决策行为分析及分子动力学建模[J]. 吉林大学学报(工学版), 2024, 54(3): 700-710.
[12] 涂辉招,王万锦,乔鹏,郭静秋,鹿畅,吴海飞. 自动驾驶卡车路测安全员接管干预行为解析[J]. 吉林大学学报(工学版), 2024, 54(3): 727-740.
[13] 范博松,邵春福. 城市轨道交通突发事件风险等级判别方法[J]. 吉林大学学报(工学版), 2024, 54(2): 427-435.
[14] 张健,李青扬,李丹,姜夏,雷艳红,季亚平. 基于深度强化学习的自动驾驶车辆专用道汇入引导[J]. 吉林大学学报(工学版), 2023, 53(9): 2508-2518.
[15] 郑植,袁佩,金轩慧,魏思斯,耿波. 桥墩复合材料柔性防撞护舷试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2581-2590.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!