吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 162-174.doi: 10.13229/j.cnki.jdxbgxb.20230252

• 交通运输工程·土木工程 • 上一篇    下一篇

考虑公交-合乘车道的多车道元胞自动机模型

姚荣涵1,2(),祁文彦2,3,胡宏宇4,杜筱婧2,乔延峰2,王立冰1   

  1. 1.山东理工大学 交通与车辆工程学院,山东 淄博 255049
    2.大连理工大学 交通运输学院,辽宁 大连 116024
    3.大连财经学院 大数据与人工智能学院,辽宁 大连 116622
    4.吉林大学 汽车底盘集成与仿生全国重点实验室,长春 130022
  • 收稿日期:2023-03-21 出版日期:2025-01-01 发布日期:2025-03-28
  • 作者简介:姚荣涵(1979-),女,教授,博士.研究方向:智能交通管控及规划.E-mail: cyanyrh@sdut.edu.cn
  • 基金资助:
    国家自然科学基金项目(52172314);辽宁省自然科学基金项目(2022-MS-150);山东省自然科学基金项目(ZR2024MG021)

Multi-lane cellular automata model considering bus-high occupancy vehicle lane

Rong-han YAO1,2(),Wen-yan QI2,3,Hong-yu HU4,Xiao-jing DU2,Yan-feng QIAO2,Li-bing WANG1   

  1. 1.School of Transportation and Vehicle Engineering,Shandong University of Technology,Zibo 255049,China
    2.School of Transportation and Logistics,Dalian University of Technology,Dalian 116024,China
    3.School of Big Data and Artificial Intelligence,Dalian University of Finance and Economics,Dalian 116622,China
    4.National Key Laboratory of Automotive Chassis Integration and Bionics,Jilin University,Changchun 130022,China
  • Received:2023-03-21 Online:2025-01-01 Published:2025-03-28

摘要:

为量化合乘车进入公交专用道对道路通行效率的影响,本文分析设置公交-合乘车道时公交车、合乘车和非合乘车的跟驰及换道特点。运用元胞自动机理论,结合公交-合乘车道管控规则,将车辆所在车道和车辆类型作为约束条件引入非对称换道规则,建立了考虑公交-合乘车道的多类型车辆跟驰及换道的多车道元胞自动机模型。利用MATLAB软件实现数值仿真,分析合乘车占比、公交发车频次、公交车站间距对交通流参数及其关系的具体影响。结果发现:三车道路段上,合乘车占比低于0.5,且初始空间占有率较高时,设置公交-合乘车道既能提升道路通行效率,又能保证公交运行速度;合乘车占比超过0.5时,限制非合乘车进入公交-合乘车道难以提升道路通行效率;初始空间占有率大于0.2时,公交发车频次越高,公交-合乘车道流量下降幅度越大;5条公交线路每3 min发车时,与初始空间占有率较低时相比,初始空间占有率较高时公交-合乘车道流量下降约30%;公交车站间距较明显地影响公交-合乘车道通行效率,公交车站间距越大,合乘车换道频率越高,就越会增加公交-合乘车道和相邻普通车道的拥堵区间,从而影响整条道路的通行效率。

Abstract:

To quantify the impacts of high occupancy vehicles (HOV) entering the exclusive bus lane on road traffic efficiency, the car following and lane changing characteristics of bus, HOV and non-HOV were analyzed when setting the bus-HOV lane. Using the theory of cellular automata (CA), and combining the control rules of the bus-HOV lane, the lane occupied by a vehicle and the type of a vehicle regarded as constraints were introduced into the asymmetric lane changing rules, and then a multi-lane CA model was established for the car following and lane changing of multi-type vehicles considering the bus-HOV lane. MATLAB software was used to accomplish numerical simulation to analyze the specific effects of the proportion of HOV, bus departure frequency and bus stop spacing on the traffic flow parameters and their relationships. The results show that: when the proportion of HOV is less than 0.5 on a three-lane road segment, setting the bus-HOV lane can not only improve road traffic efficiency but also ensure the speed of bus operation under the condition of high initial space occupancy; when the proportion of HOV exceeds 0.5, it is difficult to improve road traffic efficiency by restricting non-HOV from entering the bus-HOV lane; when the initial space occupancy is greater than 0.2, the higher the bus departure frequency is, the greater the decline of traffic volume of the bus-HOV lane is; when there are 5 bus routes to dispatch a bus every 3 minutes, compared with the low initial space occupancy, the traffic volume of the bus-HOV lane under the condition of the high initial space occupancy reduces by about 30%; the bus stop spacing more significantly affects the traffic efficiency of the bus-HOV lane, the longer the bus stop spacing is, the higher the frequency of HOV lane changing is, the more the increase of the congestion segments on the bus-HOV lane and the adjacent normal lane is, thus the traffic efficiency of the whole road is influenced.

中图分类号: 

  • U491
1 龚博文. 中小城市公交专用道布设及交通组织优化设计研究[D]. 北京: 北京交通大学交通运输学院, 2017.
1 Gong Bo-wen. Design and traffic organization optimization of bus lane on small and medium-sized city [D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University, 2017.
2 陆化普, 孙煦, 吴娟. 公交专用道优化设计的双层规划模型[J]. 中国公路学报, 2015, 28(2): 87-94.
2 Lu Hua-pu, Sun Xu, Wu Juan. Bi-level programming model for optimization design of exclusive bus lane[J]. China Journal of Highway and Transport, 2015, 28(2): 87-94.
3 Surprenant-legault J, El-geneidy A M. Introduction of reserved bus lane: impact on bus running time and on-time performance[J]. Transportation Research Record, 2011, 2218(1): 10-18.
4 石琴, 郁忠伟, 陈一锴, 等. 负面影响最小化的城市公交专用道优化设置[J]. 重庆交通大学学报:自然科学版, 2018, 37(9): 93-100.
4 Shi Qin, Yu Zhong-wei, Chen Yi-kai, et al. Optimal design of urban bus lanes considering negative impact minimization[J]. Journal of Chongqing Jiaotong University(Natural Science), 2018, 37(9): 93-100.
5 Brothers B T, Benson D E, Sheppard W V. Regional plan of preferential facilities for high-occupancy vehicles[J]. Transportation Research Record, 1975, 546: 1-12.
6 Kwon J, Varaiya P. Effectiveness of California's high occupancy vehicle (HOV) system[J]. Transportation Research Part C: Emerging Technologies, 2008, 16(1): 98-115.
7 詹嘉, 潘晓东, 高昂. HOV车道的设计应用研究[J]. 交通与运输:学术版, 2007(1): 17-20.
7 Zhan Jia, Pan Xiao-dong, Gao Ang. The research for the use and design of HOV lane[J]. Traffic & Transportation, 2007(1): 17-20.
8 韦怡林, 唐秋生, 陈锐. HOV车道设计应用效果研究: 以重庆市学府大道为例[J]. 交通科技与经济, 2017, 19(6): 12-16.
8 Wei Yi-lin, Tang Qiu-sheng, Chen Rui. Research on the application effect of HOV lane design: taking Chongqing Xuefu Street as an example[J]. Technology& Economy in Areas of Communications, 2017, 19(6): 12-16.
9 户佐安, 包天雯, 蒲政, 等. 基于出行总效用的HOV车道设置可行性研究[J]. 综合运输, 2017, 39(8): 62-67.
9 Hu Zuo-an, Bao Tian-wen, Pu Zheng, et al. Feasibility study on HOV lane setting based on traveling total utility[J]. China Transportation Review, 2017, 39(8): 62-67.
10 Viegas J, Lu B. Widening the scope for bus priority with intermittent bus lanes[J]. Transportation Planning and Technology, 2001, 24(2): 87-110.
11 Viegas J, Lu B. The intermittent bus lane signals setting within an area[J]. Transportation Research Part C: Emerging Technologies, 2004, 12(6): 453-469.
12 Qiu F, Li W Q, Zhang J, et al. Exploring suitable traffic conditions for intermittent bus lanes [J]. Journal of Advanced Transportation, 2015, 49(3): 309-325.
13 Wu D X, Deng W, Song Y, et al. Evaluating operational effects of bus lane with intermittent priority under connected vehicle environments[J]. Discrete Dynamics in Nature and Society, 2017: No. 1659176.
14 邵春福, 郭润航, 董春娇, 等. 基于HOV理念的公交专用道交通组织优化[J]. 北京交通大学学报, 2022, 46(1): 61-68.
14 Shao Chun-fu, Guo Run-hang, Dong Chun-jiao, et al. Exclusive bus lane organization and optimization based on HOV concept[J]. Journal of Beijing Jiaotong University, 2022, 46(1): 61-68.
15 刘晨阳. 公交专用3+合乘共用车道规划设置与优化研究: 以大连市软件园路为例[D]. 大连: 大连理工大学建筑与艺术学院, 2020.
15 Liu Chen-yang. Study on the planning and optimization of bus and HOV 3+ composite lane: take the Dalian Software Park Road as an example[D]. Dalian: School of Architecture and Fine Art, Dalian University of Technology, 2020.
16 Nagel K, Schreckenberg M. A cellular automaton model for freeway traffic[J]. Journal de Physique I, 1992, 2(12): 2221-2229.
17 Shang X C, Li X G, Xie D F, et al. Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior[J]. Physica A: Statistical Mechanics and its Applications, 2020, 560: No. 125220.
18 Tian J F, Zhu C Q, Jiang R, et al. Review of the cellular automata models for reproducing synchronized traffic flow[J]. Transportmetrica A: Transport Science, 2021, 17(4): 766-800.
19 Tian L J, Huang H J. Simulation of two-lane traffic flow considering the combined effect of intersection and bus stop[C]∥The Third International Joint Conference on Computational Science and Optimization, Huangshan, China, 2010: 518-522.
20 Tanimoto J, An X. Improvement of traffic flux with introduction of a new lane-change protocol supported by intelligent traffic system[J]. Chaos, Solitons & Fractals, 2019, 122: 1-5.
21 孙有信, 汪海龙, 钱勇生, 等. 周期边界下公交影响的双车道多速元胞自动机模型[J]. 系统工程理论与实践, 2008(4): 172-176.
21 Sun You-xin, Wang Hai-long, Qian Yong-sheng, et al. Mixed multi-speed vehicles on two-lane cellular automaton model under public transit influence with period boundary condition[J]. Systems Engineering-Theory and Practice, 2008(4): 172-176.
22 魏丽英, 吴荣华, 王志龙. 考虑公交影响的进口道元胞自动机换道模型[J]. 系统仿真学报, 2014, 26(6): 1327-1330.
22 Wei Li-ying, Wu Rong-hua, Wang Zhi-long. Cellular automata lane-changing model on approach considering affects of transit vehicles[J]. Journal of System Simulation, 2014, 26(6): 1327-1330.
23 单肖年, 万长薪, 王晓云, 等. 考虑公交优先的新型高乘载车道及设置策略[J]. 交通运输工程与信息学报, 2022, 20(3): 89-101.
23 Shan Xiao-nian, Wan Chang-xin, Wang Xiao-yun, et al. High occupancy vehicle lane strategy considering bus priority under intelligent and connected vehicle environment[J]. Journal of Transportation Engineering and Information, 2022, 20(3): 89-101.
24 Pedersen M M, Ruhoff P T. Entry ramps in the Nagel-Schreckenberg model[J]. Physical Review E, 2002, 65(5): No.056705.
25 Jian M Y, Li X J, Cao J X. Investigating model and impacts of lane-changing execution process based on CA model[J]. International Journal of Modern Physics C, 2020, 31(12): No.2050171.
26 李英帅, 姚红云, 秦雷. 基于站点取消与合并原理的公交站距优化方法[J]. 重庆交通大学学报:自然科学版, 2011, 30(6): 1370-1374.
26 Li Ying-shuai, Yao Hong-yun, Qin Lei. Bus station optimization method based on the principle of station canceling and station combining[J]. Journal of Chongqing Jiaotong University(Natural Science), 2011, 30(6): 1370-1374.
[1] 李德林,陈俊先,王永岗,王露,沈照庆. 基于潜在类别模型的急陡弯路段驾驶行为辨析[J]. 吉林大学学报(工学版), 2024, 54(12): 3526-3533.
[2] 潘义勇,吴静婷,缪炫烨. 老年驾驶员事故严重程度影响因素时间不稳定性分析[J]. 吉林大学学报(工学版), 2024, 54(10): 2819-2826.
[3] 徐进,陈正欢,廖祺硕,郑展骥,张河山. 基于心电数据的高速公路高密度互通立交驾驶负荷[J]. 吉林大学学报(工学版), 2024, 54(10): 2807-2818.
[4] 温惠英,何梓琦,李秋灵,赵胜. 高速公路货车换道冲突预测及其影响因素分析[J]. 吉林大学学报(工学版), 2024, 54(10): 2827-2836.
[5] 董春娇,陆育霄,马社强,李鹏辉. 考虑等待忍耐时间的电动自行车违规行为研判[J]. 吉林大学学报(工学版), 2024, 54(9): 2540-2546.
[6] 郑长江,陶童统,陈志超. 基于流量可调重分配的级联失效模型[J]. 吉林大学学报(工学版), 2024, 54(9): 2441-2450.
[7] 周锡浈,宫贺,李敦敦,季彦婕,严杰. 建成环境对路内停车泊位使用率的非线性影响模型[J]. 吉林大学学报(工学版), 2024, 54(9): 2520-2530.
[8] 严利鑫,曾涛,贺宜,郭军华,胡鑫辉. 共驾型智能车辆人机接管行为序列编码与解析[J]. 吉林大学学报(工学版), 2024, 54(9): 2547-2556.
[9] 张娜,陈峰,王剑坡,朱亚迪. 基于时空序列相似性的城轨乘客出行模式识别[J]. 吉林大学学报(工学版), 2024, 54(9): 2588-2599.
[10] 周荣贵,高沛,李雨璇,周建. 基于轨迹数据的高速公路小客车异常驾驶行为[J]. 吉林大学学报(工学版), 2024, 54(9): 2581-2587.
[11] 曲大义,刘浩敏,杨子奕,戴守晨. 基于车路协同的交通瓶颈路段车流动态分配机制及模型[J]. 吉林大学学报(工学版), 2024, 54(8): 2187-2196.
[12] 闫云娟,查伟雄,石俊刚,严丽平. 基于随机充电需求的充电桩优化双层模型[J]. 吉林大学学报(工学版), 2024, 54(8): 2238-2244.
[13] 温晓岳,钱国敏,孔桦桦,缪月洁,王殿海. TrafficPro:一种针对城市信控路网的路段速度预测框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2214-2222.
[14] 曲昭伟,李霖,陈永恒,吴场建. 长区间掉头车辆特性分析及其安全评价[J]. 吉林大学学报(工学版), 2024, 54(8): 2206-2213.
[15] 马书红,廖国美,黄岩,张俊杰. 建成环境对交通小区地铁通勤客流的异质性影响[J]. 吉林大学学报(工学版), 2024, 54(7): 1913-1922.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!