吉林大学学报(工学版) ›› 2004, Vol. ›› Issue (3): 367-372.

• 论文 • 上一篇    下一篇

铰接式车辆行驶稳定性的理论分析与数值计算

刘刚1, 张子达2   

  1. 1. 空军第二航空学院 基础部, 吉林 长春 130022;
    2. 吉林大学 机械科学与工程学院, 吉林 长春 130022
  • 收稿日期:2003-11-15 出版日期:2004-07-01
  • 通讯作者: 张子达(1942- ),男,教授,博士生导师.E-mail:zidazhang99@sina.com.cn

Theoretical analysis and numerical calculation for driving stability of articulated-frame vehicles

LIU Gang1, ZHANG Zi-da2   

  1. 1. Department of Foundation, The Second Aeronautical Institute of the Airforce, Changchun 130022, China;
    2. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2003-11-15 Online:2004-07-01

摘要: 为了获得车辆稳定行驶的临界车速,对铰接式车辆沿直线或大曲率半径曲线行驶时的稳定性进行了研究。将铰接式车辆简化为前、后两车节组成的系统,考虑了轮胎侧偏特性和液压转向机构的弹性,建立了铰接式车辆行驶稳定性线性动力学方程。给出了铰接式车辆行驶稳定性的两种判别方法:特征值方法和时不变输入下稳态响应方法。给出了稳定性因数表达式和临界车速计算方法和公式。指出了铰接式车辆的两种失稳形式:由于轮胎侧偏导致的失稳和由于转向机构缺陷导致的失稳。初步讨论了铰接式车辆侧向运动的频率响应特性。给出了两种铰接式车辆的临界车速动力修改灵敏度分析方法:基于时不变输入下稳态响应方法的直接求导法和基于复特征值分析的特征值法。以ZL10装载机为例进行了实例数值计算,得到了该车的临界车速。

关键词: 车辆工程, 铰接式车辆, 行驶稳定性, 轮胎侧偏特性, 液压转向机构, 临界车速

Abstract: In order to obtain critical speed when articutaled-frame vehicles(AFV) drive stability, the driving stability of AFV with hydraulic steering system moving along a straight or a small curvature road was studied.Idealized into a model composed of a front and rear body,taking both the elastic characteristics of hydraulic steering system and tire ride slip behavior into account, a linear dynamic equation system for the driving stability of AFV was established.Two methods of judging the driving stability of AFV were presented:the eigenvalue method and the method of steady response under constant input,and the expressions of stability factor and critical vehicle speed were derived.Two forms of instability of AFV were shown.The frequency response characteristics were discussed preliminarily.Two methods on sensitivity analysis for dynamic correction of AFV critical speed were suggested,i.e. direct derivation method based on the steady response and eigenvalue method based on complex eigenvalue analysis.Finally,the critical speed of the ZL10 loader was calculated as an example.

Key words: vehicle engineering, articulated-frame vehicle, driving stability, tire side slip characteristics, hydraulic steering system, critical speed

中图分类号: 

  • U467
[1] HARTON H L,CROLLA D A. Theoretical analysis of behavior of articulated frame steer vehicles[J]. Vehicle System Dynamics, 1986,15(4):211-234.
[2] VIK F. A linear stability of articulated buses[J]. Int J of Vehicle Design, 1988,99(1):35-51.
[3] NALECZ A G, GEN IN J. Dynamic stability of heavy articulated vehicles[J]. Int J of Vehicle Design, 1984,5(4):417-426.
[4] CROLLA D A. Soil tank measurements of tyre lateral and longitudinal tyre force[J]. J of Terramechnics, 1993,9(4):211-217.
[5] 杨惟东.铰接式装载机行驶稳定性的初步分析[J].工程机械,1986(5):7-11.YANG Weidong. Elementary analysis for travel stability of articulated loader[J]. Construction Machinery and Equipment,1986(5):7-11
[6] 刘刚.铰接车辆行驶稳定性的动力学建模[J].工程机械,1996(8):5-8.LIU Gang. Dynamics model estabhshment for travel stability of articulated vehicles[J]. Construction Machinery and Equipment, 1996 (8):5-8.
[7] 刘刚.铰接车辆行驶动态特性的研究[D].长春:吉林工业大学机械科学与工程学院,1997.LIU Gang. Research on driving dynamic characteristics of articulated--frame vehicles[D]. Changchun:College of Mechanical Science and Engineering,Jilin university of Technology, 1997.
[8] 郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.GUO Konghui. Dynamics of Controllability for Automobile[M]. Changchun:Jilin Science and Technology Publishing House, 1991.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!