吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (5): 1349-1359.doi: 10.13229/j.cnki.jdxbgxb20170705
金立生1, 谢宪毅1, 高琳琳2, 郭柏苍1
JIN Li-sheng1, XIE Xian-yi1, GAO Lin-lin2, GUO Bai-cang1
摘要: 为了减少稳定性控制中车速降低程度,降低轮胎纵向力利用率,本文基于分布式电动汽车平台,通过二次规划的方法分配各个车轮所需的纵向力,优先基于轮毂电机输出驱动力/制动力来实现横摆力矩分配。当所需横摆力矩超过轮毂电机的最大转矩时,启动液压制动系统进行补偿。双移线试验仿真结果表明,相比于传统差动制动控制系统,基于二次规划的稳定性控制系统与理想车速之间的误差保持在1 km/h以内,车速降低82.25%,平均每个轮胎力纵向利用率下降9.71%。该稳定性控制系统能够提升车辆操控稳定性和安全性,并且在加速/减速工况下具有较好的鲁棒性。
中图分类号:
[1] Nakazawa M, Isobe O, Takahashi S, et al.Braking force distribution control for improved vehicle dynamics and brake performance[J]. Vehicle System Dynamics, 1995, 24(4/5): 413-426. [2] He J, Crolla D A, Levesley M C, et al.Coordination of active steering, driveline, and braking for integrated vehicle dynamics control[J]. Journal of Automobile Engineering, 2006, 220(10): 1401-1420. [3] Li M, Jia Y, Matsuno F.Attenuating diagonal decoupling with robustness for velocity-varying 4WS vehicles[J]. Control Engineering Practice, 2016, 56: 49-59. [4] Tavasoli A, Naraghi M, Shakeri H.Optimized coordination of brakes and active steering for a 4WS passenger ca[J]. ISA Transactions, 2012, 51(5): 573-583. [5] Yin G, Wang S, Jin X.Optimal slip ratio based fuzzy control of acceleration slip regulation for four-wheel independent driving electric vehicles[J]. Mathematical Problems in Engineering, 2013(11) :1-7. [6] Doumiati M, Sename O, Dugard L, et al.Integrated vehicle dynamics control via coordination of active front steering and rear braking[J]. European Journal of Control, 2013, 19(2): 121-143. [7] Mousavinejad E, Han Q L, Yang F, et al.Integrated control of ground vehicles dynamics via advanced terminal sliding mode control[J]. Vehicle System Dynamics, 2017, 55(2): 268-294. [8] Yim S, Kim S, Yun H.Coordinated control with electronic stability control and active front steering using the optimum yaw moment distribution under a lateral force constraint on the active front steering[J]. Journal of Automobile Engineering, 2016, 230(5): 581-592. [9] Hori Y.Future vehicle driven by electricity and control-research on four-wheel-motored" UOT Electric March II"[J]. IEEE Transactions on Industrial Electronics, 2004, 51(5): 954-962. [10] Lin C, Cheng X.A traction control strategy with an efficiency model in a distributed driving electric vehicle[J]. The Scientific World Journal, 2014,2014:261085. [11] Sakai S, Sado H, Hori Y.Motion control in an electric vehicle with four independently driven in-wheel motors[J]. IEEE/ASME Transactions on Mechatronics, 1999, 4(1): 9-16. [12] Geng C, Mostefai L, Denaï M, et al.Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observe[J]. IEEE Transactions on Industrial Electronics, 2009, 56(5): 1411-1419. [13] Chen Y, Wang J.Design and evaluation on electric differentials for overactuated electric ground vehicles with four independent in-wheel motors[J]. IEEE Transactions on Vehicular Technology, 2012, 61(4): 1534-1542. [14] Liu H, Chen X, Wang X.Overview and prospects on distributed drive electric vehicles and its energy saving strategy[J]. Prz Elektrotech, 2012, 88: 122-125. [15] 张金柱,张洪田,孙远涛. 电动汽车稳定性的横摆力矩控制[J]. 电机与控制学报,2012,16(6):75-80. Zhang Jin-zhu, Zhang Hong-tian, Sun Yuan-tao.The direct yaw control of electric vehicle stability control[J].Electric Machines and Control, 2012, 16(6):75-80. [16] 石志潇. 电动汽车电液复合制动系统转弯稳定性控制研究[D].南京:南京航空航天大学能源与动力学院,2015. Shi Zhi-xiao.Research on cornering stability control of electric vehicle based on electric-hydraulic brake system[D].Nanjing: College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, 2015. [17] 绳辰. 轮毂电机驱动电动汽车纵向稳定性控制研究[D].北京:北京交通大学机械与电子控制工程学院,2014. Sheng Chen.Study on longitudinal stability of in-wheel motor vehicle[D].Beijing: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, 2014. [18] 滕冬冬. 轮毂电机电动汽车再生制动与稳定性控制研究[D].合肥:合肥工业大学汽车与交通工程学院,2016. Teng Dong-dong.Study on regenerative braking and stability control for in-wheel motor driven electric vehicle [D]. Hefei: School of Machinery and Automobile Engineering, Hefei University of Technology, 2016. [19] Amodeo M, Ferrara A, Terzaghi R, et al.Wheel slip control via second-order sliding-mode generation[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(1): 122-131. [20] Cho K, Kim J, Choi S.The integrated vehicle longitudinal control system for ABS and TCS[C]∥Control Applications (CCA), IEEE, 2012: 1322-1327. [21] Tanelli M, Ferrara A.Wheel slip control of road vehicles via switched second order sliding modes[J]. International Journal of Vehicle Design, 2013, 62(2-4): 231-253. [22] Drakunov S, Ozguner U, Dix P, et al.ABS control using optimum search via sliding modes[J]. IEEE Transactions on Control Systems Technology, 1995, 3(1): 79-85. [23] 高琳琳,金立生,郑义,等.四轮转向车辆的径向基函数神经网络复合控制器设计[J].吉林大学学报:工学版,2016,46(2):366-372. Gao Lin-lin, Jin Li-sheng, Zheng Yi, et al.Design of radial basis function neural network compound controller for four wheel steering vehicle[J].Journal of Jilin University(Engineering and Technology Edition), 2016,46(2):366-372. [24] 魏朗. 用于碰撞事故中车辆动力学模拟的轮胎模型分析[J]. 西安公路交通大学学报,1999(2):73-76. Wei Lang.An analysis of vehicle dynamic simulating tire model used in collisions accidents[J]. Journal of Xi'an Highway University, 1999(2):73-76. [25] 杜峰. 基于线控技术的四轮主动转向汽车控制策略仿真研究 [D]. 西安: 长安大学汽车学院, 2009. Du Feng.Simulation research on control strategies for active 4WS vehicle based on the steer-by-wire technology [D]. Xi'an: School of Automobile, Chang'an University, 2009. [26] Jin L, Xie X, Shen C, et al.Study on electronic stability program control strategy based on the fuzzy logical and genetic optimization method[J]. Advances in Mechanical Engineering, 2017, 9(5): 1687814017699351. [27] Petersen J A M, Bodson M. Constrained quadratic programming techniques for control allocation[J]. IEEE Transactions on Control Systems Technology, 2006, 14(1): 91-98. |
[1] | 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635. |
[2] | 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644. |
[3] | 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652. |
[4] | 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660. |
[5] | 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668. |
[6] | 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312. |
[7] | 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323. |
[8] | 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330. |
[9] | 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338. |
[10] | 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348. |
[11] | 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365. |
[12] | 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555. |
[13] | 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983. |
[14] | 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989. |
[15] | 于亮, 李和言, 马彪, 李慧珠, 李明阳. 多片离合器轴向平均比压的衰减特性[J]. 吉林大学学报(工学版), 2018, 48(4): 990-997. |
|