›› 2012, Vol. ›› Issue (03): 527-533.

• 论文 • 上一篇    下一篇

油门踏板安全辅助系统开发

宋传学, 郑竹安, 靳立强, 玄圣夷   

  1. 吉林大学 汽车仿真与控制国家重点实验室, 长春 130022
  • 收稿日期:2011-06-29 出版日期:2012-05-01
  • 基金资助:
    科技部国际合作计划项目(2010DFB83650);吉林大学学科前沿与交叉学科新项目(450060445092).

Development of accelerator pedal safety assistant system

SONG Chuan-xue, ZHENG Zhu-an, JIN Li-qiang, XUAN Sheng-yi   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2011-06-29 Online:2012-05-01

摘要: 利用AMESim软件建立了油门踏板模型和15自由度整车动力学模型。分析了初学驾驶员行为意识,应用逻辑门限值控制算法识别油门踏板误操作,正确判定后启动集成模糊-PID控制算法的防抱死制动系统(Anti-locked braking system,ABS)的安全辅助系统,保证了车辆的主动安全性。利用Matlab/Simulink和AMESim软件建立了联合仿真平台,对控制算法进行了验证。结果表明:该控制系统具有很好的实时性,能够满足实际的应用要求,提高了汽车行驶的安全性能。

关键词: 车辆工程, 误操作, 油门踏板安全辅助系统, 逻辑门限值, 模糊-PID控制, 联合仿真

Abstract: A model of the accelerator pedal and a dynamic model of whole car with 15 degrees of freedom are established using AMESim software. The conduct awareness of novice drivers is analyzed. The logical threshold algorithm is applied to recognize the misuse of the accelerator pedal. Then the safety assistant system integrated with fuzzy-PID control algorithm for Anti-lock Braking System (ABS) is started-up to realize vehicle active safety. A co-simulation platform is built up using Matlab/Simulink software and AMESim software to test and verify the control algorithm. Results show that the control system has good real-time property, which can meet actual application requirement and improve the safety performance of vehicles.

Key words: vehicle engineering, misuse, accelerator pedal of safety assist system, logic threshold, fuzzy-PID control, co-simulation

中图分类号: 

  • U461.91
[1] Ramzan Ali. Eliminating some non-ergonomic characteristics of existing automobile brake and accelerator pedal to enhance safety[C]//SAE Paper, 2002-01-2585.
[2] Wang Hui-yi, Xue Chun-yu. Modelling simulation of electric stability program for the passenger car[C]//SAE Paper, 2004-01-2090.
[3] Yosuke Kobayashi, Takeshi Kimura, Tomohiro Yamamura. Development of a prototype driver support system with accelerator pedal reaction force control and driving and braking force control[C]//SAE Paper, 2006-01-0572.
[4] Yasuhiko Takae, Yoji Seto, Tomohiro Yamamura. Development and evaluation of a distance control assist system with an active accelerator pedal[C]//SAE Paper, 2009-01-0161.
[5] 周春华,殷继友. 汽车油门踏板实施紧急制动的模糊控制[J]. 交通世界,2003,8:58-59. Zhou Chun-hua,Yin Ji-you. Fuzzy control of vehicle accelerator pedal implement emergency brake[J]. Traffic World, 2003, 8:58-59.
[6] 王鹏宇,王庆年,胡安平,等. 基于Simulink-AMESim联合仿真的混合动力客车再生制动系统分析[J].吉林大学学报:工学版, 2008, 38(增刊):7-11. Wang Peng-yu,Wang Qing-nian, Hu An-ping,et al. Analysis of regenerative brake system of hybrid bus based on Simulink- AMESim co-simulation[J]. Journal of Jinlin University(Engineering and Technology Edition), 2008, 38(Sup.): 7-11.
[7] 陈松,张娜. 基于AT89S52单片机的误踩油门控制器的设计[J].西昌学院学报:自然科学版, 2009, 23(3):73-75. Chen Song, Zhang Na. Designed for pressing accelerator pedal mistakenly based on AT89S52 MCU[J]. Journal of Xichang College(Natural Science Edition), 2009, 23(3):73-75.
[8] Lennon, William K, Kevin M. Intelligent control for brake systems[J]. Transactions on Control Systems Technology, 1999, 7(2):188-202.
[9] Kokes G, Singh T. Adaptive fuzzy logic control of an anti-lock braking system[C]//IEEE Conference on Control Applications- Proceedings, USA:Kohala Coast, 1999.
[10] 朱伟兴, 陈垠昶. 模糊PID控制在汽车ABS中的应用与仿真研究[J]. 江苏大学学报:自然科学版, 2004, 25(4):310-314. Zhu Wei-xing, Chen Yin-chang. Application and simulation of automotive ABS using fuzzy PID control[J]. Journal of Jiangsu University (Natural Science Edition), 2004, 25(4):310-314.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!