›› 2012, Vol. 42 ›› Issue (05): 1191-1197.

• 论文 • 上一篇    下一篇

基于因子分析与聚类分析的交通事件自动检测算法融合

李琦1, 姜桂艳1,2, 杨聚芬1   

  1. 1. 吉林大学 交通学院,长春 130022;
    2. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2011-10-26 出版日期:2012-09-01 发布日期:2012-09-01
  • 通讯作者: 姜桂艳(1964-),女,教授,博士生导师.研究方向:交通信息采集、处理与应用技术. E-mail:jianggy@jlu.edu.cn E-mail:jianggy@jlu.edu.cn
  • 基金资助:
    "863"国家高技术研究发展计划项目(2009AA11Z218);高等学校博士学科点专项科研基金项目(20110061110034).

Automatic incident detection algorithms fusion method based on factor analysis and cluster analysis

LI Qi1, JIANG Gui-yan1,2, YANG Ju-fen1   

  1. 1. College of Transportation, Jilin University, Changchun 130022, China;
    2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2011-10-26 Online:2012-09-01 Published:2012-09-01

摘要: 针对目前通常只利用一种交通事件自动检测算法进行事件检测导致的效果不佳问题,在对单个交通事件自动检测算法产生漏警和误警的原因进行分析的基础上,设计了一套与之相对应的交通条件在线评价指标,并以因子分析与聚类分析为手段提出了一种基于多个交通事件自动检测基本算法的决策级融合方法。运用某特大城市快速路感应线圈实测数据进行验证的结果表明,在交通事件自动检测基本算法的误警率为0.5%左右、检测率为63.5%~66.1%的条件下,所提出方法的检测率和误警率分别达到了90.6%和0.0981%,明显优于对比方法的检测效果。

关键词: 交通运输系统工程, 交通事件自动检测, 信息融合, 因子分析, 聚类分析

Abstract: For the improvement of the effect of incident detection using the single automatic incident detection algorithm (AIDA), a set of indexes used for traffic condition on-line evaluating was designed based on the analysis of the causes of failed alarms and false alarms generated by AIDAs used, and an AIDAs fusion method based on factor analysis and cluster analysis was developed. The proposed method was verified and compared using the data collected from the inductive loops on a metropolitan urban freeway. The results showed that under the condition of aimed false alarm rate 0.5% and the detection rates of the original AIDA 63.5 %~66.1%, the detection rate of proposed method is 90.6% and its false alarm rate is only 0.0981%, being obviously better than the contrast methods.

Key words: engineering of communication and transportation system, automatic incident detection, information fusion, factor analysis, cluster analysis

中图分类号: 

  • U491
[1] Luk J Y K, Sin F Y C. The calibration of freeway incident detection algorithms. Australian Road Research Board Working Document No. WD TE 92/001, ARRB, Vermont South, Victoria, 1992.
[2] Chassiakos A, Stephanedes Y. Smoothing algorithms for incident detection//Transportation Research Record 1394, Transportation Research Board, Washington, DC, 1993.
[3] Thomas K, Dia H. Development and evaluation of fractal dimension models for freeway incident detection[J]. Road and Transport Research Journal, 2004, 13 (2): 2-20.
[4] Han S I, Ritchie S G. Statistical and neural classifiers to detect traffic operational problems on urban arterials[J]. Transportation Research Part C, Emerging Technologies, 1998, 6(5): 291-314.
[5] Stephanedes Y J, Hourdakis J. Transferability of freeway incident detection algorithms//Transportation Research Record 1554, Transportation Research Board, Washington, DC, 1996.
[6] Jin X, Cheu R L,Srinivasan D. Development and adaptation of constructive probabilistic neural network in freeway incident detection[J]. Transportation Research Part C: Emerging Technologies, 2002, 10(2): 121-147.
[7] Zhou D S. An integrated traffic incident detection model. USA, Austin: University of Texas Austin at Austin, 2000.
[8] Lein L A. A Boolean algebra approach to multiple sensor voting fusion[J]. IEEE Trans, Aerospace and Electron Sys, 1993, 29(2): 1-11.
[9] Mak C L, Fan H S L. Algorithm fusion for detecting incidents on Singapore's central expressway[J]. Journal of Transportation Engineering, 2006, 132 (4): 321-330.
[10] 覃频频. 基于信息融合的高速公路事件检测建模与仿真. 成都:西南交通大学, 2007. Qin Pin-pin. Modeling and simulation of freeway incident detection based on information fusion. Chengdu: Southwest Jiaotong University, 2007.
[11] 薛薇. SPSS统计分析方法及应用[M]. 北京:电子工业出版社, 2004.
[12] Dudek C L, Messer C J, Nuckles N B. Incident detection on urban freeways//Transportation Research Board, Washington DC: TRB, 1974.
[13] Parkanyi E, Xie C. A complete review of incident detection algorithms and their deployment: what works and what doesn't. Technical Report NETCR37, New England Transportation Consortium, 2005.
[14] Cheu Ruey L, Rithie Stephen G. Automated detection of lane-blocking freeway incidents using artificial neural networks[J].Transportation Research Part C, 1995,3(6):371-378.
[15] 姜桂艳,郭海锋,吴超腾. 基于感应线圈数据的城市道路交通状态判别方法[J]. 吉林大学学报: 工学版, 2008, 38(增刊): 37-42. Jiang Gui-yan, Guo Hai-feng, Wu Chao-teng. Identification method of urban road traffic conditions based on inductive coil data[J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(Sup.): 37-42.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[14] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[15] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!