吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 440-447.doi: 10.13229/j.cnki.jdxbgxb20170037

• • 上一篇    下一篇

步行交通规划交叉路口行人瞬时动态拥塞疏散模型

苏书杰1, 何露2   

  1. 1.长安大学 公路学院,西安 710061;
    2.中船重工第722研究所,武汉 430079
  • 收稿日期:2017-01-11 出版日期:2018-03-01 发布日期:2018-03-01
  • 作者简介:苏书杰(1983-),女,工程师,博士研究生.研究方向:交通运输规划与管理. E-mail:sushujie788@163.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(61402365)

Transient dynamic congestion evacuation model of pedestrian at walk traffic planning crossroads

SU Shu-jie1, HE Lu2   

  1. 1.College of Highway,Chang'an University, Xi'an 710061, China;
    2.722th Research Institute of CSIC,Wuhan 430079,China
  • Received:2017-01-11 Online:2018-03-01 Published:2018-03-01

摘要: 针对瞬时动态拥塞中交叉路口行人拥挤中存在较强相互力学作用,常规疏散方法缺少符合相互接触摩擦的力学多变瞬时动态特征的约束参数,几乎都以人群无接触为假设条件,导致疏散过程效率、稳定性和分布均衡度较差的问题,构建了基于元胞自动机的行人瞬时动态拥塞疏散模型,对其进行解决。在模型构建中对瞬时动态拥塞的力学约束参数进行获取,在力学参数约束下,将疏散时间较长路径的流量转移至最短路径上,利用元胞自动机求解疏散瞬时动态用户最优状态。仿真测试实验表明,该模型在多疏散口及单一疏散口进行分析时,交叉路口的行人拥挤疏散效率、行人服从疏散率和疏散分布均衡度均有提高,具有一定的优势。

关键词: 交通运输系统工程, 交叉路口, 元胞自动机, 行人拥挤, 瞬时动态

Abstract: In transient dynamic congestion, there is a strong interaction among the intersection pedestrian. The conventional mechanical evacuation method lacks friction constraint parameters with changeable instantaneous dynamic characteristics, and assumes that there is no contact among the pedestrian. This results in poor evacuation process efficiency, poor stability and poor distribution equilibrium degree. To solve the above problem, a pedestrian transient dynamic congestion evacuation model based on cellular automata is proposed. First, the mechanical constraint parameters of the transient dynamic congestion are obtained. Then, under the constraint of these mechanical parameters, the traffic flow of the longer evacuation path is transferred to the shortest path. Finally, the cellular automata is used solve the transient dynamic optimal state of the user. Simulation results show that, applying the proposed model to multiple evacuation ports and single evacuation ports, the pedestrian congestion evacuation efficiency, pedestrian compliance rate and the equilibrium degree of evacuation distribution are improved.

Key words: engineering of communications and transportation system, intersection, cellular automata, pedestrian congestion, transient dynamics

中图分类号: 

  • U491
[1] Zhang Yao. Study on optimization of uban traffic congestion evacuation route[J]. Computer Simulation, 2017,34(2):200-203.
[2] Takayanagi H, Yamada S, Shibahara H, et al. A study on evaluation method for local congestion in pedestrian space by using of traj-scalar model[J]. Aij Journal of Technology & Design, 2016, 22(52):1067-1071.
[3] Cao S, Song W,Lv W. Modeling pedestrian evacuation with guiders based on a multi-grid model[J]. Physics Letters A, 2016, 380(4):540-547.
[4] 张磊, 岳昊, 李梅,等. 拥堵疏散的行人拥挤力仿真研究[J]. 物理学报, 2015, 64(6):060505.
Zhang Lei, Yue Hao, Li Mei, et al. Simulation of pedestrian push-force in evacuation with congestion[J]. Acta Physica Sinica, 2015,64(6):060505.
[5] 李明华, 袁振洲, 许琰,等. 基于点排队模型的多出口疏散优化模型研究[J]. 交通运输系统工程与信息, 2015, 15(4):166-172.
Li Ming-hua, Yuan Zhen-zhou, Xu Yan, et al. An optimization model of multi-exit evacuation based on point queue model[J]. Journal of Transportation Systems Engineering and Information Technology, 2015,15(4):166-172.
[6] 胥旋, 史聪灵, 伍彬彬,等. 人群分区疏散优化算法研究[J]. 中国安全生产科学技术, 2016, 12(11):153-158.
Xu Xuan, Shi Cong-ling, Wu Bin-bin, et al. Study on the optimization algorithm of the crowd partition evacuation[J]. Journal of Safety Science and Technology, 2016,12(11):153-158.
[7] 周继彪, 陈红, 闫彬,等. 基于云模型的地铁换乘枢纽拥挤度辨识方法[J]. 吉林大学学报:工学版, 2016, 46(1):100-107.
Zhou Ji-biao, Chen Hong, Yan Bin, et al. Identification of pedestrian crowding degree in metro transfer hub based on normal cloud model[J]. Journal of Jilin University(Engineering and Technology Edition), 2016,46(1):100-107.
[8] Djehiche B, Siwe A T, Tembine H. A mean-field game of evacuation in multi-level building[J]. IEEE Transactions on Automatic Control, 2017, 8(99):1-22.
[9] Tan L, Wu L, Lin H. An individual cognitive evacuationbehaviour model for agent-based simulation: a case study of a large outdoor event[J]. International Journal of Geographical Information Science, 2015, 29(9):1552-1568.
[10] Zhang L, Yue H, Li M, et al. Simulation of pedestrian push-force in evacuation with congestion[J].Acta Physica Sinica, 2015, 64(6):10-15.
[11] Zhou M, Dong H, Wen D, et al. Modeling of crowd evacuation with assailants via a fuzzy logic approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9):2395-2407.
[12] Solmaz G, Turgut D. Pedestrian mobility in theme park disasters[J]. IEEE Communications Magazine, 2015, 53(7):172-177.
[13] Carrillo J A, Martin S, Wolfram M T. An improved version of the Hughes model for pedestrian flow[J]. Mathematical Models & Methods in Applied Sciences, 2016, 26(4):671-697.
[14] You L, Hu J,Gu M, et al. The simulation and analysis of small group effect in crowd evacuation[J]. Physics Letters A, 2016, 380(41):3340-3348.
[15] Jiang X. Simulationmodel of pedestrian evacuation in high-rise building: considering group behaviors and real-time fire[J]. International Journal of Smart Home, 2015, 9(2):81-92.
[16] Wang J, Jin Z, Hilton R G, et al. Controls on fluvial evacuation of sediment from earthquake-triggered landslides[J]. Geology, 2015, 43(2):115-118.
[17] Karbovskii V, Voloshin D, Karsakov A, et al. Multiscale agent-based simulation in large city areas: emergency evacuation use case [J]. Procedia Computer Science, 2015, 51(1):2367-2376.
[18] Tsiftsis A, Georgoudas I G, Sirakoulis G C. Real data evaluation of a crowd supervising system for stadium evacuation and its hardware implementation[J]. IEEE Systems Journal, 2016, 10(2):649-660.
[19] Ronchi E, Nilsson D, Koji S, et al. A virtual reality experiment on flashing lights at emergency exit portals for road tunnel evacuation[J]. Fire Technology, 2016, 52(3):623-647.
[20] Ronchi E, Kinateder M, Müller M, et al. Evacuation travel paths in virtual reality experiments for tunnel safety analysis[J]. Fire Safety Journal, 2015, 71(24):257-267.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[14] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
[15] 王占中, 赵利英, 焦玉玲, 曹宁博. 信号交叉口自行车和行人混合交通流社会力模型[J]. 吉林大学学报(工学版), 2018, 48(1): 89-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王文权, 商延赓, 李秀娟, 王春生, 张桂兰. 激光焊接650 MPa相变诱发塑性钢的组织与性能[J]. , 2012, 42(05): 1203 -1207 .
[2] 黄健康1, 何翠翠1, 2, 石玗1, 樊丁1. 铝/钢异种金属焊接接头界面Al-Fe金属间化合物生成及其热力学分析[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] 徐涛, 刘光洁, 葛海潮, 张炜, 于征磊. 焊接热源局部坐标移动曲线路径建模方法[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] 骆海涛, 周维佳, 王洪光, 武加锋. 搅拌摩擦焊机器人典型工况下的受载分析[J]. 吉林大学学报(工学版), 2015, 45(3): 884 -891 .
[5] 杨悦, 周磊磊. 微弧氧化对铝合金搅拌摩擦焊缝耐蚀性能的影响[J]. 吉林大学学报(工学版), 2016, 46(2): 511 -515 .
[6] 初亮, 孙成伟, 郭建华, 赵迪, 李文惠. 基于轮缸压力的制动能量回收评价方法[J]. 吉林大学学报(工学版), 2018, 48(2): 349 -354 .
[7] 何祥坤, 季学武, 杨恺明, 武健, 刘亚辉. 基于集成式线控液压制动系统的轮胎滑移率控制[J]. 吉林大学学报(工学版), 2018, 48(2): 364 -372 .
[8] 史文库, 刘国政, 宋海生, 陈志勇, 张宝. 纯电动客车振动噪声特性[J]. 吉林大学学报(工学版), 2018, 48(2): 373 -379 .
[9] 张天时, 宋东鉴, 高青, 王国华, 闫振敏, 宋薇. 电动汽车动力电池液体冷却系统构建及其工作过程仿真[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[10] 陈吉清, 杜天亚, 兰凤崇. 钝性碰撞中人体肝脏生物力学响应数值分析[J]. 吉林大学学报(工学版), 2018, 48(2): 398 -406 .