吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (01): 68-73.

• 论文 • 上一篇    下一篇

恶劣天气下高速公路实时事故风险预测模型

徐铖铖, 刘攀, 王炜, 李志斌   

  1. 东南大学 交通学院, 南京 210096
  • 收稿日期:2011-11-10 出版日期:2013-01-01 发布日期:2013-01-01
  • 作者简介:徐铖铖(1987-),男,博士研究生.研究方向:交通运输规划与管理.E-mail:iamxcc1@163.com
  • 基金资助:

    国家道路交通安全科技行动计划项目(2009BAG13A07-5);"973"国家重点基础研究发展计划项目(2012CB725402);江苏省研究生科研创新计划项目(CXZZ_0164);教育部博士生学术新人奖项目.

Real time crash risk prediction model on freeways under nasty weather conditions

XU Cheng-cheng, LIU Pan, WANG Wei, LI Zhi-bin   

  1. School of Transportation, Southeast University, Nanjing 210096, China
  • Received:2011-11-10 Online:2013-01-01 Published:2013-01-01

摘要: 先提取了美国加州I-880N高速公路上一段长为23 km路段的实时交通流数据、事故数据和气象数据。然后采用Logistic模型建立了基于交通流数据和气象数据的事故风险预测模型。研究结果表明:天气条件对事故风险有显著影响,在雨天和雾天的比值比(Odds ratios)分别为6.4和4.4时,事故风险性分别提高了5.4和3.4倍。最后建立了不含天气参数的事故风险预测模型,结果表明:含有天气参数的实时事故风险模型预测精度为71.7%,不含天气参数的模型预测精度为66.5%,表明天气条件可以显著提高实时事故风险模型的预测精度。

关键词: 交通运输安全工程, 高速公路, 恶劣天气, 实时事故风险, Logistic回归模型

Abstract: The real-time traffic flow data, crash data, crash data and weather condition data were extracted and collected from a 23-km segment of freeway I-880 N in the state of California of the United States. A real-time crash risk prediction model on freeways was built based on the traffic flow data and weather data using the Logistic regression model. The data analysis results showed that the weather condition variables had significant impact on the likelihood of crash occurrence on freeways. The odds ratios for rainy and foggy days were 6.4 and 4.4 respectively, indicating that the crash risks for rainy and foggy days were 5.4 and 3.4 times respectively higher than that for clear days. A Logistic regression model was also built based on only real-time traffic flow data for the comparison purpose. The analysis results show that the prediction accuracy of the model with weather variables was 71.7%, while it was 66.5% without these variables. The weater condition variables significantly enhance the prediction accaracy of the real-time crash risk prediction model on freeway.

Key words: engineering of communications and transportation safety, freeway, nasty weather, real time crash risk, Logistic regression model

中图分类号: 

  • U491.31
[1] Qiu L, Nixon W A. Effects of adverse weather on traffic crashes systematic review and meta-analysis[J]. Transportation Research Record, 2008, 2055: 139-146.

[2] Brodsky H, Hakkert A S. Risk of a road accident in rainy weather[J]. Accident Anal Prevention, 1988, 20(2):161-176.

[3] Andrey J, Yagar S. A temporal analysis of rain-related crash risk[J]. Accident Anal Prevention, 1993, 25(4):465-472.

[4] Khattak A J, Knapp K K. Interstate highway crash injuries during winter snow and nonsnow events[J]. Transportation Research Record, 2001, 1746: 30-36.

[5] Eisenberg D, Warner K E. Effects of snowfalls on motor vehicle collisions, injuries, and fatalities[J]. American Journal of Public Health, 2005, 95(2):120-124.

[6] Abdelaty M, Uddin N, Abdalla F, et al. Predicting freeway crashes based on loop detector data using matched case-control logistic regression[J]. Transportation Research Record, 2004, 1897: 88-95.

[7] Abdel-aty M, Uddin N, Pande A. Split models for predicting multi-vehicle crashes during high-speed and low-speed operating conditions on freeways[J]. Transportation Research Record, 2005, 1908: 51-58.

[8] Abdelaty M, Pande A. Identifying crash propensity using specific traffic speed conditions[J]. Journal of Safety Research, 2005, 36(1): 97-108.

[9] Lee C, Saccomanno F, Hellinga B. Analysis of crash precursors on instrumented freeways[J]. Transportation Research Record, 2002, 1784: 1-8.

[10] Lee C, Hellinga B, Saccomanno F. Real-time crash prediction model for application to crash prevention in freeway traffic[J]. Transportation Research Record, 2003, 2749: 67-77.

[11] Hossain M, Muromachi Y. Evaluating location of placement and spacing of detectors for real-time crash prediction on urban expressways//The 89th Annual Meeting of the Transportation Research Board, Washington, D.C., 2010: 1-15.

[12] Zheng Z, Ahna S, Monsere C. Impact of traffic oscillations on freeway crash occurrences[J]. Accident Analysis and Prevention, 2010, 42(2): 626-636.

[13] Jung S, Qin X, Noyce D A. Rainfall effect on single-vehicle crash severities using polychotomous response models[J]. Accident Analysis and Prevention, 2010, 42(1): 213-214.

[14] 张文彤. SPSS11统计分析教程[M].北京:北京希望电子出版社, 2002: 91-99.

[15] Lensberg T, Eilifsen A, McKee T E. Bankruptcy theory development and classification via genetic programming[J]. European Journal of Operational Research, 2006, 169(2): 677-697.
[1] 代存杰,李引珍,马昌喜,柴获,牟海波. 不确定条件下危险品配送路线多准则优化[J]. 吉林大学学报(工学版), 2018, 48(6): 1694-1702.
[2] 孙宗元, 方守恩. 高速公路出入口运动车辆轨迹分层聚类算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1696-1702.
[3] 王芳荣, 郭柏苍, 金立生, 高琳琳, 岳欣羽. 次任务驾驶安全评价指标筛选及其权值计算[J]. 吉林大学学报(工学版), 2017, 47(6): 1710-1715.
[4] 谭立东, 刘丹, 李文军. 基于蝇复眼的交通事故现场全景图像阵列仿生设计[J]. 吉林大学学报(工学版), 2017, 47(6): 1738-1744.
[5] 李烨, 王炜, 邢璐, 王昊, 董长印. 自动巡航与可变限速协同控制对高速公路基本路段通行效率的改善[J]. 吉林大学学报(工学版), 2017, 47(5): 1420-1425.
[6] 李显生, 孟祥雨, 郑雪莲, 程竹青, 任圆圆. 非满载罐体内液体冲击动力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 737-743.
[7] 王占中, 赵利英, 曹宁博. 基于多层编码遗传算法的危险品运输调度模型[J]. 吉林大学学报(工学版), 2017, 47(3): 751-755.
[8] 徐进, 陈薇, 周佳, 罗骁, 邵毅明. 汽车转向盘操作与驾驶负荷的相关性[J]. 吉林大学学报(工学版), 2017, 47(2): 438-445.
[9] 郭应时, 付锐, 赵凯, 马勇, 袁伟. 驾驶人换道意图实时识别模型评价及测试[J]. 吉林大学学报(工学版), 2016, 46(6): 1836-1844.
[10] 李鹏辉, 张文会, 胡孟夏, 李一兵, 吴彪. 高速公路驾驶人超车过程中的扫视行为[J]. 吉林大学学报(工学版), 2016, 46(1): 114-119.
[11] 孙璐, 徐建, 崔相民. 面板数据模型分析及交通事故预测[J]. 吉林大学学报(工学版), 2015, 45(6): 1771-1778.
[12] 王喆, 杨柏婷, 刘昕, 刘群, 宋现敏. 基于模糊聚类的驾驶决策判别[J]. 吉林大学学报(工学版), 2015, 45(5): 1414-1419.
[13] 马勇, 石涌泉, 付锐, 郭应时. 驾驶人分心时长对车道偏离影响的实车试验[J]. 吉林大学学报(工学版), 2015, 45(4): 1095-1101.
[14] 徐建, 孙璐. 解决交通事故数据分析中零值问题的模型[J]. 吉林大学学报(工学版), 2015, 45(3): 769-775.
[15] 杨庆芳, 马明辉, 杨聚芬, 邴其春, 梁士栋. 高速公路交通流运行稳定性分析[J]. 吉林大学学报(工学版), 2014, 44(6): 1596-1603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!