吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (增刊1): 414-418.

• 论文 • 上一篇    下一篇

基于信息测度的图像过渡区提取与分割

康文炜1, 康文颖2, 康晓涛1   

  1. 1. 吉林大学 通信工程学院, 长春 130022;
    2. 吉林大学第二医院 心血管内科,长春 130041
  • 收稿日期:2012-05-10 发布日期:2013-06-01
  • 作者简介:康文炜(1974- ),女,工程师.研究方向:图像处理.E-mail:kangwenwei@sohu.com
  • 基金资助:

    国家自然科学基金资助项目(50977037);吉林大学科学前沿与交叉学科创新项目(201103213).

Image transition region extraction and segmentation based on information measure

KANG Wen-wei1, KANG Wen-ying2, KANG Xiao-tao1   

  1. 1. College of Communication Engineering, Jilin University, Changchun 130022, China;
    2. Cardiovascular Department, The Second Hospital of Jilin University, Changchun 130041, China
  • Received:2012-05-10 Published:2013-06-01

摘要:

图像过渡区提取的传统算法基于梯度算子,为克服梯度算法对噪声敏感的缺点,通过对图像过渡区特征的深入分析,提出基于信息测度的过渡区直接提取方法,依据过渡区的直方图确定一个最佳分割阈值。根据过渡区像素灰度变化频繁的特点,构造提取图像过渡区的特征参数局部熵信息测度。实验结果表明,算法抗噪性能好,稳健性强,摆脱了传统算法对剪切点LlowLhigh的依赖,优于传统的过渡区间接提取算法和基于局部复杂度的过渡区直接提取方法。

关键词: 图像分割, 过渡区提取, 梯度, 信息测度, 阈值

Abstract:

Traditional transition region extraction methods are based on gradient operator.The conventional gradient-based methods are sensitive to noise.According to the characteristics of transition region,the segmentation method based on information measure was presented.Then optimal segmentation threshold was attained according to the transition region histogram.The transition region was obtained by local entropy information measurement.The proposed method depend no more on Llow and Lhigh.The filtering ability of local entropy information measurement improves the ability of proposed method to deal with noises.Experimental results indicate that the proposed method outperforms the other methods.

Key words: image segmentation, transition region extraction, gradient, information measurement, threshold

中图分类号: 

  • TP391

[1] 章毓晋.过渡区和图像分割[J].电子学报,1996,24(1):12-17. Zhang Yu-jin.Transition region and image segmentation[J].Acta Electronica Sinica,1996,24(1):12-17.

[2] Zhang Y J,Gerbrands J J.Transition region determination based thresholding[J].Pattern Recognition Lett,1991,12(1):13-23.

[3] 梁学军,乐宁.基于光强加权梯度算子的图像过渡区算法[J].图像识别与自动化,2001(1):4-7. Liang Xue-jun,Le Ning.Transition region algorithm based on weighted gradient operator[J].Image Recognition and Automatization,2001(1):4-7.

[4] Yan C X,Sang N,Zhang T X.Local entropy-based transition region extraction and thresholding [J].Pattern Recognition Letters,2003,24(16):2935-2941.

[5] 闫成新,桑农,张天序,等.基于局部复杂度的图像过渡区提取与分割[J].红外与毫米波学报,2005,24(4):312-316. Yan Cheng-xin,Sang Nong,Zhang Tian-xu,et al.Image transition region extraction and segmentation based on local complexity[J].Journal of Infrared and Millimeter Waves,2005,24(4):312-316.

[6] Kang Wen-wei,Wang Ke,Chen Wan-zhong,et al.Segmentation of coronary arteries based on transition region extraction [C]//2010 2nd International Asia Conference on Informatics in Control,Automation and Robotics (CAR 2010),2010:333-336.

[7] Kang Wen-wei,Wang Ke,Wang Qing-zhu,et al.Segmentation method based on transition region extraction for coronary angiograms [C]//The 2009 IEEE International Conference on Mechatronics and Automation (IEEE ICMA 2009),2009:905-909.

[8] 王彦春,梁德群,王演.基于图像模糊熵邻域非一致性的过渡区提取与分割[J].电子学报,2008,36(12):2445-2449. Wang Yan-chun,Liang De-qun,Wang Yan.Transition region extraction and segmentation based on image fuzzy entropy neighborhood unhomogeneity[J].Acta Electronica Sinica,2008,36(12):2445-2449.

[9] 康文炜,王珂,张立保,等.基于局部复杂度信息测度的冠脉造影图像分割[J].光电子激光,2011,22(6):954-960. Kang Wen-wei,Wang Ke,Zhang Li-bao,et al.Segmentation method based on local complexity information measurement for coronary angiograms[J].Journal of Optoelectronics Laser,2011,22(6):954-960.

[10] Cemil K,Francis K H Q.A review of vessel extraction techniques and altorithms[J].ACM Computing Surveys,2004,36(2):81-121.

[11] Cruz A L.Accuracy evaluation of different centerline approximations of blood vessels[C]//IEEE TCVG Symposium on Visualization,Eurographics Association,2004:1-11.

[1] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[2] 高坤, 涂辉招, 时恒, 李振飞. 雾霾天气低能见度对不同跟驰状态驾驶行为的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1716-1727.
[3] 李佳琪, 倪计民, 高旭南, 石秀勇, 徐晓川. 计入浮环径向温度梯度的浮环轴承润滑性能[J]. 吉林大学学报(工学版), 2017, 47(6): 1782-1790.
[4] 肖明尧, 李雄飞, 张小利, 张刘. 基于多尺度的区域生长的图像分割算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1591-1597.
[5] 刘让, 王德江, 张刘, 周达标, 贾平, 丁鹏. 基于梯度天空背景的非均匀性校正和点目标探测[J]. 吉林大学学报(工学版), 2017, 47(5): 1625-1633.
[6] 董强, 刘晶红, 周前飞. 用于遥感图像拼接的改进SURF算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1644-1652.
[7] 诸葛晶昌, 吴军, 詹湘琳, 于之靖. 基于自适应小波去噪法的精密超声波测距方法[J]. 吉林大学学报(工学版), 2017, 47(4): 1301-1307.
[8] 刘仲民, 李战明, 李博皓, 胡文瑾. 基于稀疏矩阵的谱聚类图像分割算法[J]. 吉林大学学报(工学版), 2017, 47(4): 1308-1313.
[9] 赵夫群, 周明全, 耿国华. 基于GA-Otsu法的图像阈值分割及定量识别[J]. 吉林大学学报(工学版), 2017, 47(3): 959-964.
[10] 郑明, 卓慕瑰, 张树功, 周柚, 刘桂霞. 基于混合并行遗传算法和阈值限定法的基因调控网络构建[J]. 吉林大学学报(工学版), 2017, 47(2): 624-631.
[11] 万成彪, 潘孟春, 张琦, 庞鸿锋, 朱学军. 基于张量特征值和特征向量的磁性目标定位[J]. 吉林大学学报(工学版), 2017, 47(2): 655-660.
[12] 刘海鸥, 张国鑫, 席军强, 张洪彦, 徐宜. 履带车辆传动系统动态载荷谱信号去噪[J]. 吉林大学学报(工学版), 2017, 47(1): 42-49.
[13] 肖明尧, 李雄飞. 基于高斯分解的多尺度3D Otsu阈值分割算法[J]. 吉林大学学报(工学版), 2017, 47(1): 255-261.
[14] 王培智, 田地, 龙涛, 李抵非, 邱春玲, 刘敦一. 用于TOF-SIMS的锆石样品图像自动聚焦算法[J]. 吉林大学学报(工学版), 2017, 47(1): 308-315.
[15] 韩佳伶, 赵晓晖. 基于图像梯度预测的可调节大容量可逆数据隐藏[J]. 吉林大学学报(工学版), 2016, 46(6): 2074-2079.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!