吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (04): 970-975.doi: 10.7964/jdxbgxb201304021

• 论文 • 上一篇    下一篇

形态/柔性材料二元仿生耦合增效减阻功能表面的设计与试验

田丽梅1, 高志桦1, 王银慈1, 任露泉1, 商震2   

  1. 1. 吉林大学 工程仿生教育部重点实验室,长春130022;
    2. 吉林大学 汽车工程学院,长春 130022
  • 收稿日期:2012-09-27 出版日期:2013-07-01 发布日期:2013-07-01
  • 作者简介:田丽梅 (1973-),女,副教授,博士.研究方向:机械仿生科学与工程.E-mail:limeitian@jlu.edu.cn
  • 基金资助:

    国家自然科学基金重大国际(地区)合作研究项目(50920105504);国家自然科学基金青年科学基金项目(51105168, 51205160);国土资源部公益性行业科研专项经费项目(201011082-06-2);吉林省高技术产业化示范推进项目(jfggj20111084).

Design and experiment of bionic coupling functional surface caused by dual factors of form and flexible material

TIAN Li-mei1, GAO Zhi-hua1, WANG Yin-ci1, REN Lu-quan1, SHANG Zhen2   

  1. 1. Key Laboratory of Bionic Engineering, Ministry of Education, Changchun 130022,China;
    2. College of Automotive Engineering, Jilin University,Changchun 130022,China
  • Received:2012-09-27 Online:2013-07-01 Published:2013-07-01

摘要:

通过研究水生生物在流体介质运动中,皮肤可随着流体载荷的变化而发生动态变化,并与皮下组织特有的非光滑结构形成动态耦合,形成具有特定功能的表面的现象,并依据仿生学相似原理,提出一种形态/柔性材料二元耦合功能表面设计的新思想,称之为仿生耦合功能表面(BCFS),该功能表面由不同属性的双层材料构成,利用面层材料的弹性变形以及面层材料与基底材料表面上仿生非光滑结构的耦合,对流体进行主动控制,实现增效减阻功能。探索了将这种仿生耦合功能表面(BCFS)在典型流体机械-泵上面的实现方法,并以效率为目标,进行了仿生耦合功能表面增效减阻功能的试验,试验结果表明,采用这种耦合功能表面的仿生耦合水泵,效率提高了5%以上。

关键词: 工程仿生学, 仿生耦合, 增效减阻, 泵, 功能表面

Abstract:

When aquatic creatures move in fluid medium, the elastic deformations of their epidermis vary with the fluid load. The deformations couple with the special non-smooth structures of the subcutaneous tissues under certain conditions to form special coupling function surfaces. Based on the above biological coupling phenomenon and bionics similar principle, a new design concept of dual factors coupling functional surface caused by form and flexible material is proposed. This kind of surface is called Bionic Coupling Functional Surface (BCFS). The BCFS is composed of two layers of materials with different properties. The deformation of the surface layer and the coupling function between surface layer and the subcutaneous layer with non-smooth structure are utilized to actively control the fluid medium and achieve efficiency enhancement. The implementation of the BCFS on typical fluid pump is explored. Experiment results show that with BCFS the pump efficiency is increased by 5%.

Key words: engineering bionics, bionic coupling, efficiency enhancement and drag reduction, pump, functional surface

中图分类号: 

  • TB17

[1] Ren Lu-quan, Liang Yun-hong. Biological couplings: classificatin and characteris tic rules[J].Science in China Series E: Technological Sciences,2009,52 (10):2791-2800.

[2] Ren Lu-quan, Liang Yun-hong. Biological couplings: function, characteristics and implementation mode[J]. Science in China Series E: Technological Sciences,2010, 53(2):379-387.

[3] Tian Li-mei, Ren Lu-quan, Liu Qing-ping, et al.The mechanism of drag reduction around bodies of revolution using bionic non-smooth surfaces[J]. Journal of Bionic Engineering,2007,4(2):109-116.

[4] Zhang Cheng-chun, Wang Jing, Shang Yan-geng. Numerical simulation on drag reduction of revolution body through bionic riblet surface[J]. Science in China Series E: Technological Sciences,2010,53 (11):2954-2959.

[5] 陈坤,刘庆平,廖庚华,等. 利用雕鸮羽毛的气动特性降低小型轴流风机的气动特性[J].吉林大学学报:工学版,2012,42(1):79-84. Chen Kun, Liu Qing-ping, Liao Geng-hua, et al. Aerodynamic noise reduction of small axial fan using hush characteristics of eagle owl feather[J].Journal of Jilin University(Engineering and Technology Edition, 2012,42(1):79-84.

[6] 任露泉. 地面机械脱附减阻仿生研究进展[J].中国科学E辑:技术科学,2008,38(9):1353-1364. Ren Lu-quan. Progress in the bioruc study on antiadhesion and resistance ruduction of terrain machines[J]. Science in China Series E:Technological Science,2008,38(9):1353-1364.

[7] 郭蕴纹,任露泉,刘先黎,等.仿生凹坑与纳米碳化硅/镍基复合涂层耦合表面的磨损性能[J].吉林大学学报:工学版,2012,42(1):74-78. Guo Yun-wen, Ren Lu-quan, Liu Xian-li, et al. Abrasion properties of bionic coupling surface of concave pits and nano-size SiC/Ni composite coatings[J]. Journal of Jilin University(Engineering and Technology Edition), 2012,42(1):74-78.

[8] Wu Li-yan, Han Zhi-wu, Qu Zhao-mei, et al.The Microstructures of Butt-erfly wing scales in northeast of China[J]. Joumal of Bionic Engineering, 2007, 4 (1): 47-52.

[9] Fish F E. The myth and reality of Gray's paradox: implication of dolphin drag reduction for technology[J]. Bioinsp Biomim, 2006,1:R17-R25.

[10] Zhang Hui, Yoshutake Naoki, Hagiwara Yoshimichi. Changes in Drags Acting on an Angled Wavy Silian Rubber Plate as a Model of the Skin Folds of a Swimming Dolphin[M]. Bio-mechanisms of Aminals in Swinoniong and Flying, Springer Japan,2008:91-102.

[11] Zhang Hui, Yoshutake N, Hagiucora Y. Attenuation of turbulent flow separation in wavy wall by compliant surface[J].Advancesin Turbulence XI, 2007:597- 599.

[12] Yamahata K, Hanaoka T, Hagiwara Y,et al. Turbulence modification in the flow over a silicon rubber wall as a model of dolphin skin//2nd Int Symposium on Seawater Drag Reduction, 2005:535- 544.

[13] Takashima K, Koyama S, Hagiwara Y. Direct numerical simulation on turbulent flow around a regularly deforming film[J].Advances in Turbulence XI, 2007:662 - 664.

[14] 田丽梅,卜兆国,陈庆海,等.肋条状仿生非光滑表面铸造成型法[J]. 农业工程学报,2011,27(8):189-194. Tian Li-mei, Bu Zhao-guo, Chen Qing-hai, et al. Casting method of rib-like bionic non-smooth surface[J].Transactions of the CSAE, 2011,27(8):189-194.

[15] 叶梅. 聚氨酯弹性体复合材料的制备及结构性能研究. 苏州: 苏州大学材料工程学院, 2006. Ye Mei. Synthesis and characterization of pdyureth-one elastomers coniposite materials. Suzhou: College of Materials Engineering, Suzhou University,2006.

[16] 任露泉,彭宗尧,陈庆海,等.离心式水泵仿生非光滑增效的试验研究[J].吉林大学学报:工学版,2007,37(3):575-581. Ren Lu-quan, Pen Zong-yao, Chen Qing-hai, et al. Experimental study on efficiency enhancement of centrifugal pump by bionic non-smoo-th technique[J].Journal of Jilin University(Engineering and Technology Edition), 2007,37(3):575-581.

[1] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[4] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[5] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[6] 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[7] 张天时, 宋东鉴, 高青, 王国华, 闫振敏, 宋薇. 电动汽车动力电池液体冷却系统构建及其工作过程仿真[J]. 吉林大学学报(工学版), 2018, 48(2): 387-397.
[8] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[9] 曾小华, 李文远, 宋大凤, 李高志, 冯涛. 重型商用车辆轮毂液驱系统的驱动特性[J]. 吉林大学学报(工学版), 2017, 47(4): 1009-1016.
[10] 王国林, 沈飞, 周海超, 杨建. 轮胎花纹泵浦噪声评价方法及降噪结构设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1024-1031.
[11] 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[12] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[13] 张敏, 李松晶, 蔡申. 基于无阀压电微泵控制的微流控液体变色眼镜[J]. 吉林大学学报(工学版), 2017, 47(2): 498-503.
[14] 闻德生, 陈帆, 甄新帅, 周聪, 王京, 商旭东. 双定子泵和马达在压力控制回路中的应用[J]. 吉林大学学报(工学版), 2017, 47(2): 504-509.
[15] 王颖, 李建桥, 张广权, 黄晗, 邹猛. 基于多种介质的仿生步行足力学特性[J]. 吉林大学学报(工学版), 2017, 47(2): 546-551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!