吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1729-1735.doi: 10.13229/j.cnki.jdxbgxb201406030

• • 上一篇    下一篇

基于故障在线估计的可重构机械臂分散容错控制

赵博1, 3, 李成浩2, 3, 李元春1, 3   

  1. 1.长春工业大学 电气与电子工程学院, 长春 130012;
    2. 一汽轿车股份有限公司 产品部, 长春 130012;
    3. 吉林大学 通信工程学院, 长春 130022
  • 收稿日期:2013-07-04 出版日期:2014-11-01 发布日期:2014-11-01
  • 通讯作者: 李元春(1962-),男,教授,博士生导师.研究方向:智能机械与机器人控制.E-mail:liyc@mail.ccut.edu.cn
  • 作者简介:赵博(1987-),男,博士研究生.研究方向:智能机械与机器人控制.E-mail:
  • 基金资助:
    国家自然科学基金项目(61374051,60974010); 吉林省科技发展计划项目(20110705)

Online fault estimation based on decentralized fault-tolerant control for reconfigurable manipulators

ZHAO Bo1, 3, LI Cheng-hao2, 3, LI Yuan-chun1, 3   

  1. 1.College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China;
    2.Product Development Department, FAW Car Co., Ltd, Changchun 130012, China;
    3.College of Communication Engineering,Jilin University,Changchun 130022, China
  • Received:2013-07-04 Online:2014-11-01 Published:2014-11-01

摘要: 为了降低可重构机械臂模块关节执行器和传感器故障对其控制性能的影响,提出了一种基于故障在线估计的分散容错控制方法。基于可重构机械臂的模块化属性和Lyapunov稳定性理论,设计了分散自适应滑模观测器以实现执行器和传感器故障的在线自适应估计。同时采用神经网络对子系统非线性项进行逼近和补偿,并结合非奇异快速Terminal滑模思想实现了分散容错控制。最后,采用两种不同构形的三自由度可重构机械臂进行了仿真试验,结果表明,所设计的容错控制方法是有效的。

关键词: 自动控制技术, 可重构机械臂, 故障在线估计, 分散滑模观测器, 容错控制

Abstract: To reduce the influence of module joint actuator and sensor failure on the controllability of the reconfigurable manipulator, an online fault estimation method based on the decentralized fault-tolerant control scheme was proposed. Based on the modularized property of the manipulator and Lyapunov stability theory, a decentralized adaptive sliding mode observer is constructed to estimate the actuator and sensor faults adaptively. Meanwhile, the nonlinear terms are approximated or compensated by neural networks. Then, the idea of non-singular fast terminal mode control was employed to achieve decentralized fault-tolerant control. Finally, numerical simulation was carried out for two 3-DOF reconfigurable manipulators with different configurations. The results demonstrate the effectiveness of the proposed fault-tolerant control scheme.

Key words: automatic control technique, reconfigurable manipulators, online fault estimation, decentralized adaptive sliding mode observer, fault tolerant control

中图分类号: 

  • TP24
[1] Paredis C J J, Brown H B, Khosla P K. Rapidly deployable manipulator system[J]. Robotics and Autonomous Systems, 1997, 21(3):289-304.
[2] Brambilla D, Capisani L M, Ferrara A, et al. Fault detection for robot manipulators via second-order sliding modes[J]. IEEE Transactions on Industrial Electronics, 2008, 55(11): 3954-3963.
[3] Yoo S J. Actuator fault detection and adaptive accommodation control of flexible-joint robots[J]. IET Control Theory and Applications, 2012, 6(10): 1497-1507.
[4] Zhao B, Li Y C. Multisensor fault identification scheme based on decentralized sliding mode observers applied to reconfigurable manipulators[J]. Mathematical Problems in Engineering, 2013.doi:10.1155/2013/327916.
[5] Zhang Y W, Ma C. Decentralized fault diagnosis using multiblock kernel independent component analysis[J]. Chemical Engineering Research and Design, 2012, 90(5): 667-676.
[6] Yan R Q, Gao R X, Chen X F. Wavelets for fault diagnosis of rotary machines: A review with applications[J]. Signal Processing, 2014,96(Part A):1-15.
[7] Subrahmanya N, Shin Y C. A data-based framework for fault detection and diagnostics of non-linear systems with partial state measurement[J]. Engineering Applications of Artificial Intelligence, 2013, 26(1):446-455.
[8] Zhao C L, Sun X B, Sun S L, et al. Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine[J]. Expert Systems with Applications, 2011, 38(8): 9908-9912.
[9] Silva J C D, Saxena A, Balaban E, et al. A knowledge-based system approach for sensor fault modeling, detection and mitigation[J]. Expert Systems with Applications, 2013,39(12): 10977-10989.
[10] Milena P, Rapaic M R, Jelicic Z D, et al. On-line adaptive clustering for process monitoring and fault detection[J]. Expert System with Applications, 2012, 39(11): 10226-10235.
[11] 李英, 朱明超, 李元春. 可重构机械臂模糊神经补偿控制[J]. 吉林大学学报:工学版, 2007, 37(1): 206-211. Li Ying, Zhu Ming-chao, Li Yuan-chun. Neurofuzzy compensation control for reconfigurable manipulator[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(1):206-211.
[12] Zhu M, Li Y. Decentralized adaptive fuzzy sliding mode control for reconfigurable modular manipulators[J]. International Journal of Robust and Nonlinear Control, 2010, 20(4): 472-488.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[13] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[14] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[15] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!