吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1502-1511.doi: 10.13229/j.cnki.jdxbgxb201505019

• • 上一篇    下一篇

基于多虚拟元件的直腿四足机器人Trot步态控制

李满天, 蒋振宇, 王鹏飞, 孙立宁   

  1. 哈尔滨工业大学 机器人技术与系统国家重点实验室,哈尔滨 150080
  • 收稿日期:2014-01-15 出版日期:2015-09-01 发布日期:2015-09-01
  • 通讯作者: 王鹏飞(1977-),男,副教授,博士.研究方向:仿生机器人.E-mail:wangpengfei1007@163.com
  • 作者简介:李满天(1974-),男,副教授,博士.研究方向:仿生机器人.E-mail:limt@hit.edu.cn
  • 基金资助:
    “863”国家高技术研究发展计划项目(2011AA040701); 国家自然科学基金项目(61375097,61175107)

Trotting gait control of quadruped robot with straight legs based on virtual elements

LI Man-tian, JIANG Zhen-yu, WANG Peng-fei, SUN Li-ning   

  1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
  • Received:2014-01-15 Online:2015-09-01 Published:2015-09-01

摘要: 为了提高四足机器人在未知复杂地形下的快速平稳通过能力,基于直腿四足机器人模型对机器人着地相控制方法进行了研究。首先,针对在复杂路面下的运动工况,建立了直腿四足机器人的运动学和动力学模型。其次,基于弹簧负载倒立摆动力学特性,在机身多个自由度上引入弹性阻尼等虚拟元件,在着地相过程中实现了对包括前进等在内的多个机身运动自由度的控制。最后,在虚拟样机仿真中实现了机器人在平坦路面和复杂路面下的运动,验证了控制方法的正确性和有效性。通过对仿真结果的分析,总结出两种控制策略在运动平稳性、能耗水平和耦合运动等方面的优劣,为提高机器人在不同运行工况下的综合运动性能奠定了基础。

关键词: 自动控制技术, 四足机器人, 运动控制, 对角小跑步态

Abstract: To enhance the capability of fleet and smooth navigation of quadruped robot in unknown and complex terrain, a control method of quadruped robot with straight legs in stance phase is proposed. First, in terms of the motion condition on the complex terrain, the kinematics and dynamics models of the quadruped robot with straight legs are established. Then, on the basis of the dynamic characteristics of the Spring Loaded Inverted Pendulum (SLIP), virtual elastic and damping elements are introduced to the multi-DoFs of the torso to realize the control of these DoFs during stance phase, especially, in the forward movement. Finally, the control method is verified in simulation of the robot navigating on flat or complex ground. The performances of two control strategies developed are discussed in simulation to improve the synthesized performance of quadruped under different conditions.

Key words: automatic control technology, quadruped robot, locomotion control, trotting gait

中图分类号: 

  • TP273
[1] Hoyt D F,Taylor C R. Gait and the energetics of locomotion in horses[J].Nature, 1981, 292(5820): 239-240.
[2] Nanua P, Waldron K J. Energy comparison between trot, bound, and gallop using a simple model[J]. Journal of Biomechanical Engineering, 1995, 117(4): 466-473.
[3] Raibert M H. Legged Robots that Balance[M]. Massachusetts: MIT Press, 1986.
[4] Buchli J, Kalakrishnan M,Mistry M, et al. Compliant quadruped locomotion over rough terrain[C]∥IEEE Intelligent Robots and Systems, St. Louis, USA, 2009: 814-820.
[5] Palmer III L R, Orin D E.Intelligent control of high-speed turning in a quadruped[J]. Journal of Intelligent and Robotic Systems, 2010, 58(1): 47-68.
[6] Shkolnik A, Levashov M, Manchester I R, et al. Bounding on rough terrain with the LittleDog robot[J]. The International Journal of Robotics Research, 2011, 30(2): 192-215.
[7] Kalakrishnan M, Buchli J, Pastor P, et al. Learning, planning, and control for quadruped locomotion over challenging terrain[J]. The International Journal of Robotics Research, 2011, 30(2): 236-258.
[8] Maufroy C, Nishikawa T, Kimura H. Stable dynamic walking of a quadruped robot “Kotetsu” using phase modulations based on leg loading/unloading[C]∥IEEE International Conference on Robotics and Automation, Anchorage, USA, 2010: 5225-5230.
[9] Maufroy C, Kimura H, Takase K. Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading[J]. Autonomous Robots, 2010, 28(3): 331-353.
[10] Buehler M, Playter R, Raibert M. Robots step outside[C]∥Adaptive Motion of Animals and Machines, Ilmenau, Germany,2005: 1-4.
[11] Pratt J, Chew C M, Torres A, et al. Virtual model control: An intuitive approach for bipedal locomotion[J]. The International Journal of Robotics Research, 2001, 20(2): 129-143.
[12] Hutter M, Remy C D, Hoepflinger M A, et al. Scarleth: design and control of a planar running robot[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011: 562-567.
[13] Jiang Zhen-yu, Li Man-tian, Guo Wei. Running control of a quadruped robot in trotting gait[C]∥IEEE Conference on Robotics, Automation and Mechatronics, Qingdao, China, 2011: 172-177.
[14] Spröwitz A, Tuleu A, Vespignani M, et al. Towards dynamic trot gait locomotion: design, control, and experiments with cheetah-cub, a compliant quadruped robot[J]. The International Journal of Robotics Research, 2013, 32(8): 932-950.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[13] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[14] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[15] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!