吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1155-1161.doi: 10.13229/j.cnki.jdxbgxb201504019

• • 上一篇    下一篇

Y型微混合器结构与工作参数在两相脉动混合中的优化

刘国君,赵天,王聪慧,杨志刚,杨旭豪,李思明   

  1. 吉林大学 机械科学与工程学院,长春 130022
  • 收稿日期:2014-03-05 出版日期:2015-07-01 发布日期:2015-07-01
  • 作者简介:刘国君(1972-)男,副教授.研究方向:压电驱动及微流控.E-mail:gjliu@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51375207)

Optimization of structure, working parameters of Y type micro-mixer in two-phase pulsating mixing

  1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2014-03-05 Online:2015-07-01 Published:2015-07-01

摘要: 为提高微尺度下不同反应物的混合效率,针对Y型脉动微混合器结构与工作参数对其混合性能的影响展开优化研究。采用仿真分析对微混合器流道截面尺寸、入口夹角、入口流量及脉动频率进行了优化分析,优选出最佳结构和工作参数,并以此制作试验用系统样机;利用化学反应探针法,通过检测可控合成后的金纳米粒子大小及分布情况,综合评估其混合性能。试验结果表明:Y型脉动微混合器的截面尺寸、流道夹角在入口流量及工作频率一定的条件下存在一个最优值,入口流量及工作频率是一对相互影响的重要工作参数,一定的流量对应一个最佳混合频率。

关键词: 流体传动与控制, 微混合器, 脉动混合, 化学反应探针法, 可控合成, 金纳米粒子

Abstract: In order to improve the mixing efficiency of different reactants in microscale, a study on optimization of the structure and working parameters of the Y type pulsing micro mixer is conducted, in which the effects of the structure and parameters on mixing performance are taken into consideration. By simulation analysis, the channel section size, entrance angle, entrance flow rate and pulsation frequency are optimized. Based on the optimized structure and working parameters, a test prototype was made in lab. Using chemical reaction probe method, the prototype is tested. After detecting the size and distribution of gold nanoparticles by controllable synthesis, the mixing performance is evaluated synthetically. The test results indicate that when the entrance flow rate and working frequency are ascertained, there exist corresponding optimum values of the section size and flow rate of the Y type pulsing micro mixer. The entrance flow rate and working frequency are important parameters which influence each other. A certain flow rate corresponds to an optimum mixing frequency.

中图分类号: 

  • TN384
[1] Jeong Gi Seok, Chung Seok, Kim Chang Beom, et al. Applications of micromixing technology[J]. Analyst, 2010, 135(3): 460-473.
[2] Hessel Volker, Löwe Holger, Schönfeld Friedhelm. Micromixers-a review on passive and active mixing principles[J].Chemical Engineering Science, 2005, 60(8-9): 2479-2501.
[3] Suh Yong Kweon, Kang Sangmo. A review on mixing in microfluidics[J]. Micromachines, 2010,1(3): 82-111.
[4] Li Jia-xing, Zhang Meng-ying, Wang Li-mu, et al. Design and fabrication of microfluidic mixer from carbonyl iron-PDMS composite membrane[J]. Microfluid Nanofluid, 2011,10(4): 919-925.
[5] Lee Chia Yen, Chang Chin Lung, Wang Yao nan, et al. Microfluidic mixing: a review[J]. International Journal of Molecular Sciences, 2011,12(5): 3263-3287.
[6] 王灵秀, 张仁元, 陈观生, 等. T型微混合器混合特性的浓度分布评价法[J]. 分析化学研究简报, 2008,8(9): 1241-1244. Wang Ling-xiu, Zhang Ren-yuan, Chen Guan-sheng, et al. Concentration distribution evaluation technique for T-shaped micromixer[J]. Chinese Joumal of Analytical Chemistry, 2008,8(9): 1241-1244.
[7] 夏国栋, 李建, 周明正, 等. Tesla 微混合器结构参数对混合强度的影响[J]. 工程热物理学报, 2011, 32(3):433-436. Xia Guo-dong, Li Jian, Zhou Ming-zheng, et al. The effect of structural parameters on mixing index in tesla-type micromixer[J]. Journal of Engineering Thermophysics, 2011, 32(3):433-436.
[8] 毛文彬,徐进良. 脉动流动强化微混合的研究[J]. 高校化学工程学报, 2009,23(3): 397-403. Mao Wen-bin, Xu Jin-liang. Enhancing the micron scale mixing in a micromixer by pulsating flow[J]. Journal of Chemical Engineering of Chinese Universities, 2009,23(3): 397-403.
[9] Mao W B, Xu J L. Micromixing enhanced by pulsating flows[J]. International Journal of Heat and Mass Transfer, 2009,52(21-22): 5258-5261.
[10] Sugano K, Uchida Y, Ichihashi O, et al. Mixing speed-controlled gold nanoparticle synthesis with pulsed mixing microfludic system[J]. Microfluid Nanofluid, 2010, 9(6): 1165-1174.
[11] Shi Xin, Xiang Yang, Wen Li-xiong, et al. CFD analysis of flow patterns and micromixing efficiency in a Y-Type microchannel reactor[J]. Industrial and Engineering Chemistry Research, 2012,51(43): 13944-13952.
[12] Ma Yan-bao, Sun Chien Pin, Fields Michael, et al. An unsteady microfluidic T-form mixer perturbed by hydrodynamic pressure[J]. Journal of Micromech Microeng, 2008,18(4):1-14.
[13] Hsieh Shou Shing, Lin Jyun Wei, Chen Jyun Hong. Mixing efficiency of Y-type micromixers with different angles[J]. International Journal of Heat and Fluid Flow, 2013,44:130-139.
[14] Barath Palanisamy, Brian Paul. Continuous flow synthesis of ceria nanoparticles using static T-mixers[J]. Chemical Engineering Science, 2012, 78: 46-52.
[15] 郭春海, 谭俊杰. 一种新型主动微混合器及其流场的数值研究[J]. 计算力学学报, 2012, 29(5): 800-805. Guo Chun-hai,Tan Jun-jie. A new active micro-mixer and research on its numerical flow field[J]. Chinese Journal of computational Mechanics, 2012, 29(5): 800-805.
[16] 张平, 胡亮红, 刘永顺. 主辅通道型微混合器的设计与制作[J]. 光学精密工程, 2010,18(4): 872-879. Zhang Ping, Hu Liang-hong, Liu Yong-shun. Design and fabrication of micromixer with main-assist channels[J]. Optics and Precision Engineering, 2010,18(4): 872-879.
[17] 彭菊村, 卢强华, 吴波英. 金纳米颗粒水相合成工艺研究[J]. 稀有金属材料与工程, 2006, 35(6): 954-958. Peng Ju-cun, Lu Qiang-hua, Wu Bo-ying. Study on stirring time and in aqueous synthesis for au nanoparticles[J]. Rare Metal Materials and Engineering, 2006, 35(6): 954-958.
[18] Weng Chen Hsun, Huang Chih Chia, Yeh Chen Sheng. Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system[J]. Journal of Micromech Microeng, 2008,18(3):1-8.
[1] 姜继海, 葛泽华, 杨晨, 梁海健. 基于微分器的直驱电液伺服系统离散滑模控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1492-1499.
[2] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[3] 刘国君, 马祥, 杨志刚, 王聪慧, 吴越, 王腾飞. 集成式三相流脉动微混合芯片[J]. 吉林大学学报(工学版), 2018, 48(4): 1063-1071.
[4] 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[5] 王佳怡, 刘昕晖, 王昕, 齐海波, 孙晓宇, 王丽. 数字二次元件变量冲击机理及其抑制[J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781.
[6] 闻德生, 王京, 高俊峰, 周聪. 双定子单作用叶片泵闭死容腔的压力特性[J]. 吉林大学学报(工学版), 2017, 47(4): 1094-1101.
[7] 刘国君, 张炎炎, 杨旭豪, 李新波, 刘建芳, 杨志刚. 声表面波技术在金纳米粒子可控制备中的应用[J]. 吉林大学学报(工学版), 2017, 47(4): 1102-1108.
[8] 王丽, 刘昕晖, 王昕, 陈晋市, 梁燚杰. 装载机数字液压传动系统换挡策略[J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[9] 李慎龙, 刘树成, 邢庆坤, 张静, 赖宇阳. 基于LBM-LES模拟的离合器摩擦副流致运动效应[J]. 吉林大学学报(工学版), 2017, 47(2): 490-497.
[10] 张敏, 李松晶, 蔡申. 基于无阀压电微泵控制的微流控液体变色眼镜[J]. 吉林大学学报(工学版), 2017, 47(2): 498-503.
[11] 闻德生, 陈帆, 甄新帅, 周聪, 王京, 商旭东. 双定子泵和马达在压力控制回路中的应用[J]. 吉林大学学报(工学版), 2017, 47(2): 504-509.
[12] 顾守东, 刘建芳, 杨志刚, 焦晓阳, 江海, 路崧. 压电式锡膏喷射阀特性[J]. 吉林大学学报(工学版), 2017, 47(2): 510-517.
[13] 张健, 姜继海, 李艳杰. 锥型节流阀流量特性[J]. 吉林大学学报(工学版), 2016, 46(6): 1900-1905.
[14] 吴维, 狄崇峰, 胡纪滨, 苑士华. 基于液压变压器的自适应换向驱动系统[J]. 吉林大学学报(工学版), 2016, 46(6): 1906-1911.
[15] 杨华勇, 王双, 张斌, 洪昊岑, 钟麒. 数字液压阀及其阀控系统发展和展望[J]. 吉林大学学报(工学版), 2016, 46(5): 1494-1505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!