吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 733-739.doi: 10.13229/j.cnki.jdxbgxb201503008

• • 上一篇    下一篇

两难区引导系统激活时间的确定

贾洪飞, 杨东   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2013-11-11 出版日期:2015-05-01 发布日期:2015-05-01
  • 作者简介:贾洪飞(1969-),男,教授,博士生导师.研究方向:交通网络分析技术.
  • 基金资助:
    国家自然科学基金项目(51278221)

Method for determining the activation time of dilemma-zone avoidance-guiding system

JIA Hong-fei, YANG Dong   

  1. College of Transportation, Jilin University, Changchun 130022, China
  • Received:2013-11-11 Online:2015-05-01 Published:2015-05-01

摘要: 在给出一种通过提前确定行驶行为实现交叉口处车辆引导的两难区规避系统的基础上,提出了一种系统激活时间的确定方法。首先,分析了系统激活时间对车辆引导的影响;其次,计算将要陷入两难区的车辆利用加速策略通过交叉口时所需的激活时间,对于接近速度较大的情形,给出一种增益模型用以确定激活时间上限;再次,计算将要陷入两难区的车辆利用减速策略在停车线前停车所需的激活时间;最后,选择应用加速策略和减速策略时激活时间的较大者作为系统激活时间。理论分析与算例结果表明,提出的方法可以确定合理的系统激活时间,增加了车辆通过加速引导规避两难区并通过交叉口的可能。

关键词: 交通运输系统工程, 信号交叉口, 两难区, 引导系统, 激活时间

Abstract: Based on the description of a dilemma-zone avoidance-guiding system, a method for determining the activation time of the system is proposed. First, the impact of the activation time on vehicle guidance is analyzed. Second, the activation time needed for the vehicle, which would have been caught in the dilemma zone, to cross the intersection with an acceleration strategy is computed. For high-speed vehicles, a gain model is proposed for determining the upper bound of the activation time; then the activation time for vehicle, would have been caught in the dilemma zone, to pull up before the stop line with a deceleration strategy is computed. Finally, the greater value between the two activation times is taken as the activation time of the system. Theoretical analysis and numerical examples show that an appropriate activation time can be determined by the proposed method, which can increase the possibility for vehicle to cross the intersection using accelerating strategy without being caught in the dilemma zone.

Key words: engineering of communication and transportation system, signalized intersection, dilemma zone, guiding system, activation time

中图分类号: 

  • U491
[1] Sharma A, Bullock D, Peeta S. Estimating dilemma zone hazard function at high speed isolated intersection[J]. Transportation Research Part C: Emerging Technology, 2011,19(3):400-412.
[2] Zegeer C V.Effectiveness of green-extension systems at high-speed intersections, research report 472[R]. Lexington:Kentucky Department of Transportation,1977.
[3] Yi P. Application of IntelliDrive information system to enhance high-speed safety[J]. Journal of Transportation Research Board,2011,2215:105-112.
[4] Li P F, Abbas M M, Pasupathy R, et al. A new dilemma zone protection algorithm based on the vehicle, trajectories prediction and markov process[C]∥Transportation Research Board 89th Annual Meeting,Washington DC,2010.
[5] 储浩,杨晓光,朱彤,等. 基于智能车路系统的交叉口主动交通安全技术研究[J].交通与计算机,2008,26(4):135-139.
Chu Hao, Yang Xiao-guang, Zhu Tong, et al. Active traffic safety technology in intersection based on intelligent vehicle-infrastructure syste[J]. Journal of Transport Information and Safety,2008,26(4):135-139.
[6] Si J, Urbanik T, Han L. Effectiveness of alternative detector configurations for option zone protection on high-speed approaches to traffic signals[J]. Transportation Research Record,2007,2035:107-113.
[7] Gozalvez J, Sepulcre M, Bauza R. IEEE 802.11p vehicle to infrastructure communications in urban environments[J]. IEEE Communications Magazine,2012,50:176-183.
[8] Yang D, Jia H F, Tang M. Realization of a dilemma-zone guiding algorithm at signalized intersections[J]. IEEE Transactions on Intelligent Transportation Systems,2014:2333-2339.
[9] Moon Y J.Functional requirements for in-vehicle dilemma zone warning system at signalized intersections[J].Transportation Research Record,2002,1800:62-68.
[10] Rajesh R. Vehicle Dynamics and Control[M]. New York: Springer-Verlag,2011.
[11] Liu C, Herman R, Gazis D. A review of the yellow interval dilemma[J]. Transportation Research Part A, 1996, 30(5):333-348.
[12] ISO2631-1-1997. Mechanical vibration and shock-evaluation of human exposure to whole-body vibration-part 1:general requirements[S].
[13] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 北京:高等教育出版社, 2008.
[14] Saito T, Ooyama N, Sigeta K. Dilemma and option zones, the problem and countermeasures - characteristics of zones, and a new strategy of signal control for minimizing zones[C]∥Third International Conference on Road Traffic Control,London,1990:137-141.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[14] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[15] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!