吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 479-486.doi: 10.13229/j.cnki.jdxbgxb201602022

• 论文 • 上一篇    下一篇

基于电液能量回收的挖掘机节能系统仿真评价与试验

龚俊1, 2, 何清华1, 2, 张大庆2, 刘昌盛1, 2, 赵喻明1, 2, 胡鹏1, 2   

  1. 1.中南大学 高性能复杂制造国家重点实验室,长沙 410083;
    2.山河智能装备股份有限公司,国家级企业技术中心,长沙 410100
  • 收稿日期:2014-07-14 出版日期:2016-02-20 发布日期:2016-02-20
  • 通讯作者: 何清华(1946-),男,教授,博士生导师.研究方向:液压工程机械及凿岩机器人技术.E-mail:hehq@sunward.com.cn E-mail:gongjun861@139.com
  • 作者简介:龚俊(1986-),男,博士研究生.研究方向:工程机械机电液一体化与节能技术.E-mail:gongjun861@139.com
  • 基金资助:
    国家科技支撑计划项目(2014BAA04B00)

Evaluation and testing of electric-hydraulic energy regeneration system of excavator

GONG Jun1, 2, HE Qing-hua1, 2, ZHANG Da-qing2, LIU Chang-sheng1, 2, ZHAO Yu-ming1, 2, HU Peng1, 2   

  1. 1.The State Key Laboratory of High Performance Complicated Manufacturing, Central South University, Changsha 410083 , China;
    2.The National Enterprise R&D Center, Sunward Intelligent Equipment Co.,Ltd.,Changsha 410100, China
  • Received:2014-07-14 Online:2016-02-20 Published:2016-02-20

摘要: 以液压挖掘机节能为目的,结合挖掘机的工况特点,设计了一种挖掘机电液能量回收系统方案.为了从理论上分析能量回收系统性能,并找出改善系统燃油经济性的有效途径,建立了液压挖掘机电液能量回收系统的仿真模型并进行仿真分析.以某型20吨级液压挖掘机为试验平台,对电液能量回收系统进行了试验研究.仿真与试验结果表明:在单动作条件下,电液能量回收系统的最高能量回收效率为40%,搭载该系统的挖掘机在标准工况下,能实现17.6%的节能效果,并不降低原系统其他性能.

关键词: 机械设计, 挖掘机, 能量回收, 系统建模

Abstract: In order to save energy in hydraulic excavator, the excavator working condition is analyzed and an electro-hydraulic energy regeneration system is designed. To theoretically analyze the characteristics of the energy regeneration system, a simulation model is built and numerical analysis is carried out. To verify the simulation results, the energy regeneration system is equipped in a 20-ton excavator and large number of tests is conducted. Both simulation and test results show that in single operation, the maximum energy regeneration efficiency of the electro- hydraulic energy regeneration system can reach 40%. When equipped with this system, the excavator can save energy by 17.6% without loss of its original operating characteristics.

Key words: mechanical design, excavator, energy regeneration, system modeling

中图分类号: 

  • TH122
[1] Hannan M A, Azidin F A, Mohamed A. Hybrid electric vehicles and their challenges: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 135-150.
[2] Al-Alawi B M, Bradley T H. Review of hybrid, plug-in hybrid, and electric vehicle market modeling studies[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 190-203.
[3] Sharma P, Bhatti T S. A review on electrochemical double-layer capacitors[J]. Energy Conversion and Management, 2010, 51(12): 2901-2912.
[4] Kwon T S, Lee S W, Sul S K, et al. Power control algorithm for hybrid excavator with supercapacitor[J]. Industry Applications, IEEE Transactions on, 2010, 46(4): 1447-1455.
[5] Choi J, Kim H, Yu S, et al. Development of integrated controller for a compound hybrid excavator[J]. Journal of Mechanical Science and Technology, 2011, 25(6): 1557-1563.
[6] Jin K, Park T, Lee H. A control method to suppress the swing vibration of a hybrid excavator using sliding mode approach[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226(5): 1237-1253.
[7] Kagoshima M, Komiyama M, Nanjo T, et al. Development of new hybrid excavator[J]. Kobelco Technology Review, 2007 (27): 39-42.
[8] Ochiai M, Ryu S. Hybrid in construction machinery[C]//Proceedings of the 7th JFPS, International Symposium on Fluid Power, Toyama,2008:41-44.
[9] 王庆丰, 张彦廷, 肖清. 混合动力工程机械节能效果评价及液压系统节能的仿真研究[J]. 机械工程学报, 2005, 41(12): 135-140.
Wang Qing-feng, Zhang Yan-ting, Xiao Qing. Evaluation for energy saving effect and simulation research on energy saving of hydraulic system in hybrid construction machinery[J]. Chinese Journal of Mechanical Engineering, 2005, 41(12): 135-140.
[10] 张彦廷, 王庆丰, 肖清. 混合动力液压挖掘机液压马达能量回收的仿真及试验[J]. 机械工程学报, 2007, 43(8):218-223.
Zhang Yan-ting, Wang Qing-feng, Xiao Qing. Simulation and experimental research on energy regeneration with hydraulic motor for hybrid drive excavator[J]. Chinese Journal of Mechanical Engineering, 2007, 43(8): 218-223.
[11] 肖清, 王庆丰, 张彦廷, 等. 液压挖掘机混合动力系统建模及控制策略研究[J]. 浙江大学学报: 工学版, 2007, 41(3): 480-483.
Xiao Qing, Wang Qing-feng , Zang Yan-ting ,et al. Study on modeling and control strategy of hybrid system in hydraulic excavator[J]. Journal of Zhejiang University(Engineering Science),2007, 41(3): 480-483.
[12] Lin Tian-liang, Wang Qing-feng, Hu Bao-zan, et al. Research on the energy regeneration systems for hybrid hydraulic excavators[J]. Automation in Construction, 2010, 19(8): 1016-1026.
[13] Wang Tao, Wang Qing-feng. Design and analysis of compound potential energy regeneration system for hybrid hydraulic excavator[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2012, 226(10): 1323-1334.
[14] Lin Tian-liang, Wang Qing-feng. Hydraulic accumulator-motor-generator energy regeneration system for a hybrid hydraulic excavator[J]. Chinese Journal of Mechanical Engineering, 2012, 25(6): 1121-1129.
[15] Wang Tao, Wang Qing-feng, Lin Tian-liang. Improvement of boom control performance for hybrid hydraulic excavator with potential energy recovery[J]. Automation in Construction, 2013, 30: 161-169.
[16] Inoue H. Introduction of PC200-8 hybrid hydraulic excavators[J]. Komatsu Technical Report, 2008, 54(161): 1-6.
[17] 夏虹. 博世力士乐携尖端绿色解决方案亮相Bauma China 2012[J].建筑机械化, 2013 (1): 23.
Xia Hong. Bosch rexroth shows the advaned green solution in Bauma China 2012[J]. Construction Machinery, 2013 (1): 23.
[18] JCMAS Standard H020[S]. Japan Construction Mechanization Association. Earth-moving machinery test methods for energy consumption hydraulic excavator.
[1] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[2] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[3] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[4] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[5] 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[6] 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[7] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[8] 孙秀荣, 董世民, 王宏博, 李伟成, 孙亮. 整体抽油杆柱在油管内空间屈曲的多段式仿真模型对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[9] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[10] 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[11] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[12] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[13] 李锐, 张路阳, 刘琳, 武粤元, 陈世嵬. 基于相似理论的三跨桥梁磁流变隔振[J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
[14] 李因武, 吴庆文, 常志勇, 杨成. 基于仿生斗齿的反铲液压挖掘机动臂仿真优化设计[J]. 吉林大学学报(工学版), 2018, 48(3): 821-827.
[15] 初亮, 孙成伟, 郭建华, 赵迪, 李文惠. 基于轮缸压力的制动能量回收评价方法[J]. 吉林大学学报(工学版), 2018, 48(2): 349-354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!