吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 1494-1505.doi: 10.13229/j.cnki.jdxbgxb201605017
杨华勇, 王双, 张斌, 洪昊岑, 钟麒
YANG Hua-yong, WANG Shuang, ZHANG Bin, HONG Hao-cen, ZHONG Qi
摘要:
作为液压系统中重要的控制元件,液压阀负责实现整个系统的控制功能。随着传感器技术和电子技术的发展,数字阀因其更容易实现计算机控制而日益受到研究者的重视。本文综述了国内外数字液压阀的发展历程、研究现状及应用领域。通过回顾液压阀的控制方式,讨论了新的液压控制技术在数字阀领域的应用。并以可编程阀控单元为例,说明了广义数字阀的技术特点。最后,对数字阀的发展前景进行了预测:模块化、高响应、高效率是今后发展的方向。
中图分类号:
[1] 路甬祥. 流体传动与控制技术的历史进展与展望[J]. 机械工程学报,2010,46(10):1-9. Lu Yong-xiang. Historical progress and prospects of fluid power transmission and control[J]. Chines Journal of Mechanical Engineering, 2010,46(10):1-9. [2] Achten P. Convicted to innovation in fluid power[J]. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2010, 224(6):619-621. [3] Kagoshima M, Komiyama M, Nanjo T, et al. Development of new kind of hybrid excavator [J]. Research and Development Kobe Steel Engineering Reports, 2007,57(1):66-69. [4] Yang Hua-yong, Pan Min. Engineering research in fluid power: a review[J]. Journal of Zhejiang University, A: Science, 2015(16): 427-442. [5] Ueno H, Okajima A, Tanaka H, et al. Noise measurement and numerical simulation of oil flow in pressure control valves[J]. JSME International Journal, Series 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermo Physical Properties,1994,37(2):336-341. [6] Wang Feng, Gu Lin-yi, Chen Ying. A continuously variable hydraulic pressure converter based on high-speed on-off valves[J]. Mechatronics, 2011,21(8):1298-1308. [7] Linjiama M. Digital fluid power: state of the art[C]∥The 12th Scandinavian International Conference on Fluid Power. Tampere, Finland, 2011: 18-20. [8] 许仰曾,李达平,陈国贤. 液压数字阀的发展及其工程应用[J]. 流体传动与控制,2010(2):5-9. Xu Yang-zeng, Li Da-ping, Chen Guo-xian. Development and application of digital valve[J]. Fluid Power Transmission and Control, 2010(2):5-9. [9] 贾鹏光,吕伟华. 日本数字调速阀静动态性能的研究[J]. 重庆大学学报:自然科学版,1994,17(2):119-125. Jia Peng-guang, Lyu Wei-hua. Analysis and study to static and dynamic characteristics for a digital speed control valve made in Japan[J]. Journal of Chonoqing University, 1994, 17(2):119-125. [10] 郜立焕,赵成,赵才. 步进式液压数字阀用永磁式步进电动机的非线性控制[J]. 兰州理工大学学报,2004,30(2):62-65. Gao Li-huan, Zhao Cheng, Zhao Cai. Nonlinear control of stepmotors step-digital valve with perm anent magnet stepmotor[J]. Journal of Lanzhou University of Technology, 2004, 30(2):62-65. [11] 何曦光,彭利坤,叶帆. 基于增量式数字阀的液压作动器设计及控制策略研究[J]. 液压气动与密封,2015,30(3):24-27. He Xi-guang, Peng Li-kun, Ye Fan. Design and control strategy study of hydraulic actuator with incremental digital valve[J]. Hydraulics Pneumatics & Seals,2015,30(3):24-27. [12] 胡竟湘,李建军,钟定清. 高速开关阀及其发展趋势[J]. 机电产品开发与创新, 2009,22(2):60-62. Hu Jing-xiang, Li Jian-jun, Zhong Ding-qing. High speed on-off valve and its development trend[J]. Development & Innovation of Machinery & Electrical Products, 2009, 22(2):60-62. [13] 傅林坚. 大流量高响应电液比例阀的设计及关键技术研究[D]. 杭州: 浙江大学机械工程学院,2010: 10-12. Fu Lin-jian. Research on the design and the key technology of the elec-hydraulic proportional valve with large flow rate and high responsibility[D]. Hangzhou:College of Mechanical Engineering,Zhejiang University, 2010: 10-12. [14] Kong Xiao-wu, Li Shi-zhen. Dynamic performance of high speed solenoid valve with parallel coils[J]. Chinese Journal of Mechanical Engineering, 2014, 27:816-821. [15] Lantela T, Kajaste J, Kostamo J, et al. Pilot operated miniature valve with fast response and high flow capacity[J]. International Journal of Fluid Power, 2014, 15(1): 11-18. [16] Scheidl R, Gradl C, Kogler H, et al. Investigation of a switch-off time variation problem of a fast switching valve[C]∥ASME/Bath 2014 Symposium on Fluid Power and Motion Control, Bath, UK, 2014. [17] 张峰. 基于超磁致伸缩材料的气动高速开关阀的设计研究[D]. 杭州: 浙江大学机械工程学院, 2012: 22-23. Zhang Feng. Design and research on pneumatic high speed on-off valve based on giant magnetostrictive material[D]. Hangzhou:College of Mechanical Engineering,Zhejiang University, 2012: 22-23. [18] Li Li-yi, Zhang Cheng-min, Yan Bai-ping,et al. Research of a giant magnetostrictive valve with internal cooling structure[J]. IEEE Transactions on Magnetics, 2011, 47(10): 2897-2900. [19] 李跃松,朱玉川,吴洪涛,等.超磁致伸缩伺服阀用电-机转换器传热及热误差分析[J].农业机械学报,2015,46(2):343-350. Li Yue-song, Zhu Yu-chuan, Wu Hong-tao, et al. Modeling of heat transfer and displacement error from heat of giant magnetostrictive actuator applied in servovalve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):343-350. [20] 陆豪, 朱成林, 曾思, 等. 新型 PZT 元件驱动的电液高速开关阀及其大功率快速驱动技术的研究[J]. 机械工程学报, 2002, 38(8): 118-121. Lu Hao, Zhu Cheng-lin, Zeng Si, et al. Study on the new kind of electro-hydraulic high-speed on-off valve driven by PZT components and its high-powerful and speedy technique[J]. Chines Journal of Mechanical Engineering, 2002, 38(8): 118-121. [21] 欧阳小平,杨华勇, 蒋昊宜, 等. 新型压电高速开关阀仿真研究[J]. 科学通报,2008,53(14):1737-1741. Ouyang Xiao-ping, Yang Hua-yong, Jiang Hao-yi, et al. Simulation of high-speed switching valve with new typed piezoelectric[J]. Chinese Science Bulletin, 2008,53(14):1737-1741. [22] 许有熊, 朱青松. 压电数字阀电-机械转换器设计与分析[J]. 机械设计,2013,30(11):77-82. Xu You-xiong, Zhu Qing-song. Design and analyze of piezoelectric digital valve mechanical converter[J]. Journal of Machine Design, 2013,30(11):77-82. [23] Skelton D. Design of a high performance actuation system enabled by energy coupling actuation[D].West Lafayette:Purdue University, 2014. [24] 周盛. 液压自由活塞发动机运动特性及其数字阀研究[D]. 杭州: 浙江大学机械工程学院, 2006: 21. Zhou Sheng. Research into dynamic performance and digital valve for hydraulic free piston engine[D]. Hangzhou: College of Mechanical Engineering,Zhejiang University, 2006: 21. [25] 郁秀峰, 韩秀坤, 李建纯,等. 电控柴油机高速数字开关阀 (HSV) 的特性与应用研究[J]. 车辆与动力技术, 1995,58(4):12-17. Yu Xiu-feng, Han Xiu-kun, Li Jian-chun, et al. Study on application and performance of HSV in diesel engine with electronic control[J]. Vehicle & Power Technology, 1995,58(4):12-17. [26] 丁凡, 姚健娣, 笪靖, 等. 高速开关阀的研究现状[J]. 中国工程机械学报, 2011, 9(3): 351-358. Ding Fan, Yao Jian-di, Da Jing, et al. Advances on high-speed on-off valves[J]. Chines Journal of Mechanical Engineering, 2011, 9(3): 351-358. [27] Sturman Oded Eddie, Park Woodland. Digital fuel injector, injection and hydraulic valve actuation module and engine and high pressure pump methods and apparatus[P]. US 8,342,153. 2013-01-01. [28] Tu H C, Rannow M B, Wang M, et al. Design, modeling, and validation of a high-speed rotary pulse-width-modulation on/off hydraulic valve[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(6): 061002. [29] 阮健,裴翔,李胜. 2D电液数字换向阀[J]. 机械工程学报,2000,36(3):86-89. Ruan Jian, Pei Xiang, Li Sheng. 2D digital directional control valve[J]. Chines Journal of Mechanical Engineering, 2000,36(3):86-89. [30] 江海兵,阮健,李胜,等. 2D电液高速开关阀设计与实验[J].农业机械学报,2015,46(2):328-334. Jiang Hai-bing, Ruan Jian, Li Sheng, et al. Design and experiment of 2D electrohydraulic high-speed on-off valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):328-334. [31] Hansen A H, Henrik C P. Avoidance of pressure oscillations in discrete fluid power systems with transmission lines-an analytical approach[C]∥Proceedings of the 9th JFPS International Symposium on Fluid Power, Matsue, Japan, 2014. [32] Locateli C, Teixeira P, De Pieri E. Digital hydraulic system using pumps and on/off valves controlling the actuator[C]∥8th FPNI Symposium on Fluid Power, Lappeenranta, Finland, 2014. [33] Linjama M, Vilenius M. Energy-efficient motion control of a digital hydraulic joint actuator[C]∥Proceedings of the JFPS International Symposium on Fluid Power, 2005. [34] Linjama M, Paloniitty M, Tiainen L. Mechatronic design of digital hydraulic micro valve package[J]. Procedia Engineering, 2015, 106: 97-107. [35] Siivonen L, Tamlink Ltd. Fault tolerance of digital hydraulics in high dynamic hydraulic system[C]∥The Fourteenth Scandinavian International Conference on Fluid Power, Tampere, Finland, 2015. [36] Kamelreiter M, Kemmetmüller W, Kugi A. Digitally controlled electrorheological valves and their application in vehicle dampers[J]. Mechatronics, 2012, 22(5): 629-638. [37] Johnston D N. A switched inertance device for efficient control of pressure and flow[C]∥ASME 2009 Dynamic Systems and Control Conference.Califorma,USA,2009: 589-596. [38] Sell N, Johnston D, Plummer A, et al. A linear valve actuated switched inertance hydraulic system[C]∥The Fourteenth Scandinavian International Conference on Fluid Power, Tampere, Finland, 2015. [39] Clausen M. Fluid controller and a method of detecting an error in a fluid controller[P]. US:8,042,568. 2011-10-25. [40] Kontz M, Book W. Electronic control of pump pressure for a small haptic backhoe[J]. International Journal of Fluid Power, 2007, 8(2):5-16. [41] Omberg C J, James P J. Proportional speed control of fluid power devices[P].US:5,319,933. 1994-06-14. [42] 吴根茂, 邱敏秀, 王庆丰, 等. 新编实用电液比例技术[M]. 杭州:浙江大学出版社,2006:2. [43] Aoki Y, Uwhara K, Hirose K, et al. Load sensing fluid power systems[J]. SAE Technical Papers, 1994, 103:139-153. [44] Marani P, Ansaloni G, Paoluzzi R, et al. Test methods for flow sharing directional valves[J]. Power Transmission and Motion Control, 2006: 347. [45] 刘伟. 挖掘机电液流量匹配控制系统特性研究[D]. 杭州: 浙江大学机械工程学院, 2012: 7. Liu Wei. Investigation into the characteristics of electrohydraulic flow matching control systems for excavators[D]. Hangzhou:College of Mechanical Engineering,Zhejiang University, 2012: 7. [46] MettäläK, Djurovic M, Keuper G, et al. Intelligent oil flow management with EFM: the potentials of electrohydraulic flow matching in tractor hydraulics[C]∥The Tenth Scandinavian International Conference on Fluid Power, Tampere, Finland, 2007:25-34. [47] Jansson A, Palmberg J O. Separate controls of meter-in and meter-out orifices in mobile hydraulic systems[J]. SAE Technical Paper, 1990, 99(2):377-383. [48] Elfving M. A concept for a distributed controller of fluid power actuators[D]. Sweden: Linköping University, 1997. [49] Bjorn E. Mobile fluid power system design with a focus on energy efficient[D]. Sweden: Linköping University, 2010. [50] Andersen T O, Münzer M E, Hansen M R. Evaluations of control strategies for separate meter-in separate meter-out hydraulic boom actuation in mobile applications[C]∥The 17th International Conference on Hydraulic and Pneumatics, Ostrava, Czech Republic, 2001. [51] Yao B, Song L. Energy-saving control of hydraulic systems with novel programmable valves[C]∥Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, China, 2002:81-91. [52] Sitte A, Weber J. Structural design of independent metering control systems[C]∥The 13th Scandinavian International Conference on Fluid Power, Linköping, Sweden: 2013. [53] Vukovic M, Murrenhoff H. Single edge meter out control for mobile machinery[C]∥SME/Bath 2014 Symposium on Fluid Power and Motion Control, Bath, UK, 2014. [54] Randall T A, Perry L Y. Mathematical modeling of a two spool flow control servovalve using a pressure control pilot[J]. Journal of Dynamic Systems, Measurement, and Control, 2002, 124(3): 420-427. [55] 徐兵,丁孺琦,张军辉. 基于泵阀联合控制的负载口独立系统试验研究[J]. 浙江大学学报:工学版,2015,49(1):93-101. Xu Bing, Ding Ru-qi, Zhang Jun-hui. Experiment research on individual metering systems of mobile machinery based on coordinate control of pump and valves[J]. Journal of Zhejiang University (Engineering Science), 2015,49(1):93-101. [56] 危丹锋. 挖掘机双阀芯液压系统控制策略研究[D]. 长沙: 中南大学机电工程学院, 2011. Wei Dan-feng. Research on control strategies of hydraulic excavator used dual spool valves[D]. Changsha: College of Mechanical Engineering,Central South University, 2011. [57] 权龙, 廉自生. 应用进出油口独立控制原理改善泵控差动缸系统效率[J]. 机械工程学报,2005,41(3):123-127. Quan Long, Lian Zi-sheng. Improving the efficiency of pump controlled differential cylinder system with inlet and outlet separately controlled principle[J]. Chinese Journal of Mechanical Engineering,2005,41(3):123-127. [58] 李振振,黄家海,权龙,等. 基于数字流量阀负载口独立控制系统[J]. 液压与气动,2016(2):17-22. Li Zhen-zhen, Huang Jia-hai, Quan Long, et al. The independent metering system based on digital flow valve[J]. Hydraulics Pneumatics & Seals,2016(2):17-22. [59] 王晓娟. 基于负载口独立技术的挖掘机液压系统控制策略研究[D]. 太原:太原科技大学机械工程学院, 2013. Wang Xiao-juan. Strategies of hydraulic excavator based on independent control[D]. Taiyuan: College of Mechanical Engineering, Taiyuan University of Science & Technology, 2013. [60] 袁明论. 负载口独立控制的双伺服阀控缸系统研究[D]. 北京:北京理工大学自动化学院, 2015. Yuan Ming-lun. Research on load port independent controlled double servo valves cylinder system[D].Beijing: School of Automation, Beijing Institute of Technology, 2015. [61] 丁孺琦. 负载口独立系统多模式控制方法及其工程机械应用[D]. 杭州:浙江大学机械工程学院,2015:3-4. Ding Ru-qi. The multi-mode control method of the independent metering system and its application in mobile machinery[D]. Hangzhou:College of Mechanical Engineering,Zhejiang University, 2015:3-4. [62] 焦宗夏, 彭传龙, 吴帅. 工程机械多路阀研究进展与发展展望[J]. 液压与气动,2013(11):1-6. Jiao Zong-xia, Peng Chuan-long, Wu Shuai. Progress in construction machinery multi-way valve and future trends[J]. Hydraulics Pneumatics & Seals, 2013(11):1-6. [63] Murrenhoff H, Millos S S. An overview of energy saving architectures for mobile applications[C]∥9th IFK Conference Pproceedings, Aachean, Germany: 2014. [64] Paloniiyyt M, Linjiama M, Huhtala K. Concept of digital microhydraulic valve system utilising Lamination Technology[C]∥9th IFK Conference Proceedings, Aachean, Germany: 2014. [65] Turner S B, Lakin D F. Electrohydraulic proportional control valve assemblies[P]. UKP 2,298,291. 1996-02-22. [66] Yang X, Paik M J, Pfaff J L. Pilot operated control valve having a poppet with integral pressure compensating mechanism[P]. US:6,745,992. 2004-6-8. [67] Shenouda A. Quasi-static hydraulic control systems and energy savings potential using independent metering four-valve assembly configuration[D].Georgia,USA: Georgia Institute of Technology, 2006: 171-175. [68] Tabor K A. Velocity based method of controlling an electrohydraulic proportional control valve[P].US:6,775,974. 2004-8-17. |
[1] | 姜继海, 葛泽华, 杨晨, 梁海健. 基于微分器的直驱电液伺服系统离散滑模控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1492-1499. |
[2] | 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507. |
[3] | 刘国君, 马祥, 杨志刚, 王聪慧, 吴越, 王腾飞. 集成式三相流脉动微混合芯片[J]. 吉林大学学报(工学版), 2018, 48(4): 1063-1071. |
[4] | 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084. |
[5] | 王佳怡, 刘昕晖, 王昕, 齐海波, 孙晓宇, 王丽. 数字二次元件变量冲击机理及其抑制[J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781. |
[6] | 闻德生, 王京, 高俊峰, 周聪. 双定子单作用叶片泵闭死容腔的压力特性[J]. 吉林大学学报(工学版), 2017, 47(4): 1094-1101. |
[7] | 刘国君, 张炎炎, 杨旭豪, 李新波, 刘建芳, 杨志刚. 声表面波技术在金纳米粒子可控制备中的应用[J]. 吉林大学学报(工学版), 2017, 47(4): 1102-1108. |
[8] | 王丽, 刘昕晖, 王昕, 陈晋市, 梁燚杰. 装载机数字液压传动系统换挡策略[J]. 吉林大学学报(工学版), 2017, 47(3): 819-826. |
[9] | 李慎龙, 刘树成, 邢庆坤, 张静, 赖宇阳. 基于LBM-LES模拟的离合器摩擦副流致运动效应[J]. 吉林大学学报(工学版), 2017, 47(2): 490-497. |
[10] | 张敏, 李松晶, 蔡申. 基于无阀压电微泵控制的微流控液体变色眼镜[J]. 吉林大学学报(工学版), 2017, 47(2): 498-503. |
[11] | 闻德生, 陈帆, 甄新帅, 周聪, 王京, 商旭东. 双定子泵和马达在压力控制回路中的应用[J]. 吉林大学学报(工学版), 2017, 47(2): 504-509. |
[12] | 顾守东, 刘建芳, 杨志刚, 焦晓阳, 江海, 路崧. 压电式锡膏喷射阀特性[J]. 吉林大学学报(工学版), 2017, 47(2): 510-517. |
[13] | 张健, 姜继海, 李艳杰. 锥型节流阀流量特性[J]. 吉林大学学报(工学版), 2016, 46(6): 1900-1905. |
[14] | 吴维, 狄崇峰, 胡纪滨, 苑士华. 基于液压变压器的自适应换向驱动系统[J]. 吉林大学学报(工学版), 2016, 46(6): 1906-1911. |
[15] | 袁哲, 徐东, 刘春宝, 李雪松, 李世超. 基于热流固耦合过程的液力缓速器叶片强度分析[J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512. |
|