吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 1494-1505.doi: 10.13229/j.cnki.jdxbgxb201605017

• 论文 • 上一篇    下一篇

数字液压阀及其阀控系统发展和展望

杨华勇, 王双, 张斌, 洪昊岑, 钟麒   

  1. 浙江大学 流体传动与机电系统国家重点实验室, 杭州 310027
  • 收稿日期:2015-03-31 出版日期:2016-09-20 发布日期:2016-09-20
  • 作者简介:杨华勇(1961-),男,教授,博士生导师,中国工程院院士.研究方向:电液元件与系统创新研究.E-mail:yhy@zju.edu.cn
  • 基金资助:

    “十二五”国家科技支撑计划资助项目(2014BAF02B00).

Development and prospect of digital hydraulic valve and valve control system

YANG Hua-yong, WANG Shuang, ZHANG Bin, HONG Hao-cen, ZHONG Qi   

  1. The State Key Laboratory of Fluid Power Transmission and Control,Zhejiang University,Hangzhou 310027,China
  • Received:2015-03-31 Online:2016-09-20 Published:2016-09-20

摘要:

作为液压系统中重要的控制元件,液压阀负责实现整个系统的控制功能。随着传感器技术和电子技术的发展,数字阀因其更容易实现计算机控制而日益受到研究者的重视。本文综述了国内外数字液压阀的发展历程、研究现状及应用领域。通过回顾液压阀的控制方式,讨论了新的液压控制技术在数字阀领域的应用。并以可编程阀控单元为例,说明了广义数字阀的技术特点。最后,对数字阀的发展前景进行了预测:模块化、高响应、高效率是今后发展的方向。

关键词: 流体传动与控制, 数字液压, 高速开关阀, 液压阀控制技术, 可编程阀控单元

Abstract:

The domestic and international research states of digital hydraulic valves and their applications are reviewed from four aspects: electro-mechanical actuators, structure optimization of the valve, parallel high-speed switching valve technology, and new applications of high-speed switching valve. The new hydraulic control methods which can be applied in the digital valves are discussed. The control methods include electrohydraulic flow matching control technology and independent metering control technology, which are commonly used in digital. The characteristics of general digital valve are illustrated using a programmable control valve unit as an example. Recommendations are given in three aspects, including modularization, high response and high efficiency.

Key words: turn and control of fluid, digital fluid power, high-speed on/off valve, hydraulic valve control technology, programmable valve control unit

中图分类号: 

  • TH137.52
[1] 路甬祥. 流体传动与控制技术的历史进展与展望[J]. 机械工程学报,2010,46(10):1-9.
Lu Yong-xiang. Historical progress and prospects of fluid power transmission and control[J]. Chines Journal of Mechanical Engineering, 2010,46(10):1-9.
[2] Achten P. Convicted to innovation in fluid power[J]. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2010, 224(6):619-621.
[3] Kagoshima M, Komiyama M, Nanjo T, et al. Development of new kind of hybrid excavator [J]. Research and Development Kobe Steel Engineering Reports, 2007,57(1):66-69.
[4] Yang Hua-yong, Pan Min. Engineering research in fluid power: a review[J]. Journal of Zhejiang University, A: Science, 2015(16): 427-442.
[5] Ueno H, Okajima A, Tanaka H, et al. Noise measurement and numerical simulation of oil flow in pressure control valves[J]. JSME International Journal, Series 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermo Physical Properties,1994,37(2):336-341.
[6] Wang Feng, Gu Lin-yi, Chen Ying. A continuously variable hydraulic pressure converter based on high-speed on-off valves[J]. Mechatronics, 2011,21(8):1298-1308.
[7] Linjiama M. Digital fluid power: state of the art[C]∥The 12th Scandinavian International Conference on Fluid Power. Tampere, Finland, 2011: 18-20.
[8] 许仰曾,李达平,陈国贤. 液压数字阀的发展及其工程应用[J]. 流体传动与控制,2010(2):5-9.
Xu Yang-zeng, Li Da-ping, Chen Guo-xian. Development and application of digital valve[J]. Fluid Power Transmission and Control, 2010(2):5-9.
[9] 贾鹏光,吕伟华. 日本数字调速阀静动态性能的研究[J]. 重庆大学学报:自然科学版,1994,17(2):119-125.
Jia Peng-guang, Lyu Wei-hua. Analysis and study to static and dynamic characteristics for a digital speed control valve made in Japan[J]. Journal of Chonoqing University, 1994, 17(2):119-125.
[10] 郜立焕,赵成,赵才. 步进式液压数字阀用永磁式步进电动机的非线性控制[J]. 兰州理工大学学报,2004,30(2):62-65.
Gao Li-huan, Zhao Cheng, Zhao Cai. Nonlinear control of stepmotors step-digital valve with perm anent magnet stepmotor[J]. Journal of Lanzhou University of Technology, 2004, 30(2):62-65.
[11] 何曦光,彭利坤,叶帆. 基于增量式数字阀的液压作动器设计及控制策略研究[J]. 液压气动与密封,2015,30(3):24-27.
He Xi-guang, Peng Li-kun, Ye Fan. Design and control strategy study of hydraulic actuator with incremental digital valve[J]. Hydraulics Pneumatics & Seals,2015,30(3):24-27.
[12] 胡竟湘,李建军,钟定清. 高速开关阀及其发展趋势[J]. 机电产品开发与创新, 2009,22(2):60-62.
Hu Jing-xiang, Li Jian-jun, Zhong Ding-qing. High speed on-off valve and its development trend[J]. Development & Innovation of Machinery & Electrical Products, 2009, 22(2):60-62.
[13] 傅林坚. 大流量高响应电液比例阀的设计及关键技术研究[D]. 杭州: 浙江大学机械工程学院,2010: 10-12.
Fu Lin-jian. Research on the design and the key technology of the elec-hydraulic proportional valve with large flow rate and high responsibility[D]. Hangzhou:College of Mechanical Engineering,Zhejiang University, 2010: 10-12.
[14] Kong Xiao-wu, Li Shi-zhen. Dynamic performance of high speed solenoid valve with parallel coils[J]. Chinese Journal of Mechanical Engineering, 2014, 27:816-821.
[15] Lantela T, Kajaste J, Kostamo J, et al. Pilot operated miniature valve with fast response and high flow capacity[J]. International Journal of Fluid Power, 2014, 15(1): 11-18.
[16] Scheidl R, Gradl C, Kogler H, et al. Investigation of a switch-off time variation problem of a fast switching valve[C]∥ASME/Bath 2014 Symposium on Fluid Power and Motion Control, Bath, UK, 2014.
[17] 张峰. 基于超磁致伸缩材料的气动高速开关阀的设计研究[D]. 杭州: 浙江大学机械工程学院, 2012: 22-23.
Zhang Feng. Design and research on pneumatic high speed on-off valve based on giant magnetostrictive material[D]. Hangzhou:College of Mechanical Engineering,Zhejiang University, 2012: 22-23.
[18] Li Li-yi, Zhang Cheng-min, Yan Bai-ping,et al. Research of a giant magnetostrictive valve with internal cooling structure[J]. IEEE Transactions on Magnetics, 2011, 47(10): 2897-2900.
[19] 李跃松,朱玉川,吴洪涛,等.超磁致伸缩伺服阀用电-机转换器传热及热误差分析[J].农业机械学报,2015,46(2):343-350.
Li Yue-song, Zhu Yu-chuan, Wu Hong-tao, et al. Modeling of heat transfer and displacement error from heat of giant magnetostrictive actuator applied in servovalve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):343-350.
[20] 陆豪, 朱成林, 曾思, 等. 新型 PZT 元件驱动的电液高速开关阀及其大功率快速驱动技术的研究[J]. 机械工程学报, 2002, 38(8): 118-121.
Lu Hao, Zhu Cheng-lin, Zeng Si, et al. Study on the new kind of electro-hydraulic high-speed on-off valve driven by PZT components and its high-powerful and speedy technique[J]. Chines Journal of Mechanical Engineering, 2002, 38(8): 118-121.
[21] 欧阳小平,杨华勇, 蒋昊宜, 等. 新型压电高速开关阀仿真研究[J]. 科学通报,2008,53(14):1737-1741.
Ouyang Xiao-ping, Yang Hua-yong, Jiang Hao-yi, et al. Simulation of high-speed switching valve with new typed piezoelectric[J]. Chinese Science Bulletin, 2008,53(14):1737-1741.
[22] 许有熊, 朱青松. 压电数字阀电-机械转换器设计与分析[J]. 机械设计,2013,30(11):77-82.
Xu You-xiong, Zhu Qing-song. Design and analyze of piezoelectric digital valve mechanical converter[J]. Journal of Machine Design, 2013,30(11):77-82.
[23] Skelton D. Design of a high performance actuation system enabled by energy coupling actuation[D].West Lafayette:Purdue University, 2014.
[24] 周盛. 液压自由活塞发动机运动特性及其数字阀研究[D]. 杭州: 浙江大学机械工程学院, 2006: 21.
Zhou Sheng. Research into dynamic performance and digital valve for hydraulic free piston engine[D]. Hangzhou: College of Mechanical Engineering,Zhejiang University, 2006: 21.
[25] 郁秀峰, 韩秀坤, 李建纯,等. 电控柴油机高速数字开关阀 (HSV) 的特性与应用研究[J]. 车辆与动力技术, 1995,58(4):12-17.
Yu Xiu-feng, Han Xiu-kun, Li Jian-chun, et al. Study on application and performance of HSV in diesel engine with electronic control[J]. Vehicle & Power Technology, 1995,58(4):12-17.
[26] 丁凡, 姚健娣, 笪靖, 等. 高速开关阀的研究现状[J]. 中国工程机械学报, 2011, 9(3): 351-358.
Ding Fan, Yao Jian-di, Da Jing, et al. Advances on high-speed on-off valves[J]. Chines Journal of Mechanical Engineering, 2011, 9(3): 351-358.
[27] Sturman Oded Eddie, Park Woodland. Digital fuel injector, injection and hydraulic valve actuation module and engine and high pressure pump methods and apparatus[P]. US 8,342,153. 2013-01-01.
[28] Tu H C, Rannow M B, Wang M, et al. Design, modeling, and validation of a high-speed rotary pulse-width-modulation on/off hydraulic valve[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(6): 061002.
[29] 阮健,裴翔,李胜. 2D电液数字换向阀[J]. 机械工程学报,2000,36(3):86-89.
Ruan Jian, Pei Xiang, Li Sheng. 2D digital directional control valve[J]. Chines Journal of Mechanical Engineering, 2000,36(3):86-89.
[30] 江海兵,阮健,李胜,等. 2D电液高速开关阀设计与实验[J].农业机械学报,2015,46(2):328-334.
Jiang Hai-bing, Ruan Jian, Li Sheng, et al. Design and experiment of 2D electrohydraulic high-speed on-off valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):328-334.
[31] Hansen A H, Henrik C P. Avoidance of pressure oscillations in discrete fluid power systems with transmission lines-an analytical approach[C]∥Proceedings of the 9th JFPS International Symposium on Fluid Power, Matsue, Japan, 2014.
[32] Locateli C, Teixeira P, De Pieri E. Digital hydraulic system using pumps and on/off valves controlling the actuator[C]∥8th FPNI Symposium on Fluid Power, Lappeenranta, Finland, 2014.
[33] Linjama M, Vilenius M. Energy-efficient motion control of a digital hydraulic joint actuator[C]∥Proceedings of the JFPS International Symposium on Fluid Power, 2005.
[34] Linjama M, Paloniitty M, Tiainen L. Mechatronic design of digital hydraulic micro valve package[J]. Procedia Engineering, 2015, 106: 97-107.
[35] Siivonen L, Tamlink Ltd. Fault tolerance of digital hydraulics in high dynamic hydraulic system[C]∥The Fourteenth Scandinavian International Conference on Fluid Power, Tampere, Finland, 2015.
[36] Kamelreiter M, Kemmetmüller W, Kugi A. Digitally controlled electrorheological valves and their application in vehicle dampers[J]. Mechatronics, 2012, 22(5): 629-638.
[37] Johnston D N. A switched inertance device for efficient control of pressure and flow[C]∥ASME 2009 Dynamic Systems and Control Conference.Califorma,USA,2009: 589-596.
[38] Sell N, Johnston D, Plummer A, et al. A linear valve actuated switched inertance hydraulic system[C]∥The Fourteenth Scandinavian International Conference on Fluid Power, Tampere, Finland, 2015.
[39] Clausen M. Fluid controller and a method of detecting an error in a fluid controller[P]. US:8,042,568. 2011-10-25.
[40] Kontz M, Book W. Electronic control of pump pressure for a small haptic backhoe[J]. International Journal of Fluid Power, 2007, 8(2):5-16.
[41] Omberg C J, James P J. Proportional speed control of fluid power devices[P].US:5,319,933. 1994-06-14.
[42] 吴根茂, 邱敏秀, 王庆丰, 等. 新编实用电液比例技术[M]. 杭州:浙江大学出版社,2006:2.
[43] Aoki Y, Uwhara K, Hirose K, et al. Load sensing fluid power systems[J]. SAE Technical Papers, 1994, 103:139-153.
[44] Marani P, Ansaloni G, Paoluzzi R, et al. Test methods for flow sharing directional valves[J]. Power Transmission and Motion Control, 2006: 347.
[45] 刘伟. 挖掘机电液流量匹配控制系统特性研究[D]. 杭州: 浙江大学机械工程学院, 2012: 7.
Liu Wei. Investigation into the characteristics of electrohydraulic flow matching control systems for excavators[D]. Hangzhou:College of Mechanical Engineering,Zhejiang University, 2012: 7.
[46] MettäläK, Djurovic M, Keuper G, et al. Intelligent oil flow management with EFM: the potentials of electrohydraulic flow matching in tractor hydraulics[C]∥The Tenth Scandinavian International Conference on Fluid Power, Tampere, Finland, 2007:25-34.
[47] Jansson A, Palmberg J O. Separate controls of meter-in and meter-out orifices in mobile hydraulic systems[J]. SAE Technical Paper, 1990, 99(2):377-383.
[48] Elfving M. A concept for a distributed controller of fluid power actuators[D]. Sweden: Linköping University, 1997.
[49] Bjorn E. Mobile fluid power system design with a focus on energy efficient[D]. Sweden: Linköping University, 2010.
[50] Andersen T O, Münzer M E, Hansen M R. Evaluations of control strategies for separate meter-in separate meter-out hydraulic boom actuation in mobile applications[C]∥The 17th International Conference on Hydraulic and Pneumatics, Ostrava, Czech Republic, 2001.
[51] Yao B, Song L. Energy-saving control of hydraulic systems with novel programmable valves[C]∥Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, China, 2002:81-91.
[52] Sitte A, Weber J. Structural design of independent metering control systems[C]∥The 13th Scandinavian International Conference on Fluid Power, Linköping, Sweden: 2013.
[53] Vukovic M, Murrenhoff H. Single edge meter out control for mobile machinery[C]∥SME/Bath 2014 Symposium on Fluid Power and Motion Control, Bath, UK, 2014.
[54] Randall T A, Perry L Y. Mathematical modeling of a two spool flow control servovalve using a pressure control pilot[J]. Journal of Dynamic Systems, Measurement, and Control, 2002, 124(3): 420-427.
[55] 徐兵,丁孺琦,张军辉. 基于泵阀联合控制的负载口独立系统试验研究[J]. 浙江大学学报:工学版,2015,49(1):93-101.
Xu Bing, Ding Ru-qi, Zhang Jun-hui. Experiment research on individual metering systems of mobile machinery based on coordinate control of pump and valves[J]. Journal of Zhejiang University (Engineering Science), 2015,49(1):93-101.
[56] 危丹锋. 挖掘机双阀芯液压系统控制策略研究[D]. 长沙: 中南大学机电工程学院, 2011.
Wei Dan-feng. Research on control strategies of hydraulic excavator used dual spool valves[D]. Changsha: College of Mechanical Engineering,Central South University, 2011.
[57] 权龙, 廉自生. 应用进出油口独立控制原理改善泵控差动缸系统效率[J]. 机械工程学报,2005,41(3):123-127.
Quan Long, Lian Zi-sheng. Improving the efficiency of pump controlled differential cylinder system with inlet and outlet separately controlled principle[J]. Chinese Journal of Mechanical Engineering,2005,41(3):123-127.
[58] 李振振,黄家海,权龙,等. 基于数字流量阀负载口独立控制系统[J]. 液压与气动,2016(2):17-22.
Li Zhen-zhen, Huang Jia-hai, Quan Long, et al. The independent metering system based on digital flow valve[J]. Hydraulics Pneumatics & Seals,2016(2):17-22.
[59] 王晓娟. 基于负载口独立技术的挖掘机液压系统控制策略研究[D]. 太原:太原科技大学机械工程学院, 2013.
Wang Xiao-juan. Strategies of hydraulic excavator based on independent control[D]. Taiyuan: College of Mechanical Engineering, Taiyuan University of Science & Technology, 2013.
[60] 袁明论. 负载口独立控制的双伺服阀控缸系统研究[D]. 北京:北京理工大学自动化学院, 2015.
Yuan Ming-lun. Research on load port independent controlled double servo valves cylinder system[D].Beijing: School of Automation, Beijing Institute of Technology, 2015.
[61] 丁孺琦. 负载口独立系统多模式控制方法及其工程机械应用[D]. 杭州:浙江大学机械工程学院,2015:3-4.
Ding Ru-qi. The multi-mode control method of the independent metering system and its application in mobile machinery[D]. Hangzhou:College of Mechanical Engineering,Zhejiang University, 2015:3-4.
[62] 焦宗夏, 彭传龙, 吴帅. 工程机械多路阀研究进展与发展展望[J]. 液压与气动,2013(11):1-6.
Jiao Zong-xia, Peng Chuan-long, Wu Shuai. Progress in construction machinery multi-way valve and future trends[J]. Hydraulics Pneumatics & Seals, 2013(11):1-6.
[63] Murrenhoff H, Millos S S. An overview of energy saving architectures for mobile applications[C]∥9th IFK Conference Pproceedings, Aachean, Germany: 2014.
[64] Paloniiyyt M, Linjiama M, Huhtala K. Concept of digital microhydraulic valve system utilising Lamination Technology[C]∥9th IFK Conference Proceedings, Aachean, Germany: 2014.
[65] Turner S B, Lakin D F. Electrohydraulic proportional control valve assemblies[P]. UKP 2,298,291. 1996-02-22.
[66] Yang X, Paik M J, Pfaff J L. Pilot operated control valve having a poppet with integral pressure compensating mechanism[P]. US:6,745,992. 2004-6-8.
[67] Shenouda A. Quasi-static hydraulic control systems and energy savings potential using independent metering four-valve assembly configuration[D].Georgia,USA: Georgia Institute of Technology, 2006: 171-175.
[68] Tabor K A. Velocity based method of controlling an electrohydraulic proportional control valve[P].US:6,775,974. 2004-8-17.
[1] 姜继海, 葛泽华, 杨晨, 梁海健. 基于微分器的直驱电液伺服系统离散滑模控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1492-1499.
[2] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[3] 刘国君, 马祥, 杨志刚, 王聪慧, 吴越, 王腾飞. 集成式三相流脉动微混合芯片[J]. 吉林大学学报(工学版), 2018, 48(4): 1063-1071.
[4] 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[5] 王佳怡, 刘昕晖, 王昕, 齐海波, 孙晓宇, 王丽. 数字二次元件变量冲击机理及其抑制[J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781.
[6] 闻德生, 王京, 高俊峰, 周聪. 双定子单作用叶片泵闭死容腔的压力特性[J]. 吉林大学学报(工学版), 2017, 47(4): 1094-1101.
[7] 刘国君, 张炎炎, 杨旭豪, 李新波, 刘建芳, 杨志刚. 声表面波技术在金纳米粒子可控制备中的应用[J]. 吉林大学学报(工学版), 2017, 47(4): 1102-1108.
[8] 王丽, 刘昕晖, 王昕, 陈晋市, 梁燚杰. 装载机数字液压传动系统换挡策略[J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[9] 李慎龙, 刘树成, 邢庆坤, 张静, 赖宇阳. 基于LBM-LES模拟的离合器摩擦副流致运动效应[J]. 吉林大学学报(工学版), 2017, 47(2): 490-497.
[10] 张敏, 李松晶, 蔡申. 基于无阀压电微泵控制的微流控液体变色眼镜[J]. 吉林大学学报(工学版), 2017, 47(2): 498-503.
[11] 闻德生, 陈帆, 甄新帅, 周聪, 王京, 商旭东. 双定子泵和马达在压力控制回路中的应用[J]. 吉林大学学报(工学版), 2017, 47(2): 504-509.
[12] 顾守东, 刘建芳, 杨志刚, 焦晓阳, 江海, 路崧. 压电式锡膏喷射阀特性[J]. 吉林大学学报(工学版), 2017, 47(2): 510-517.
[13] 张健, 姜继海, 李艳杰. 锥型节流阀流量特性[J]. 吉林大学学报(工学版), 2016, 46(6): 1900-1905.
[14] 吴维, 狄崇峰, 胡纪滨, 苑士华. 基于液压变压器的自适应换向驱动系统[J]. 吉林大学学报(工学版), 2016, 46(6): 1906-1911.
[15] 袁哲, 徐东, 刘春宝, 李雪松, 李世超. 基于热流固耦合过程的液力缓速器叶片强度分析[J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[5] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[6] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[7] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[8] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[9] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[10] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .