吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1175-1181.doi: 10.13229/j.cnki.jdxbgxb201604024

• 论文 • 上一篇    下一篇

外旋立式射流减阻测试平台研制及实验

赵刚1, 李照远2, 赵华兴1, 饶宇1, 李芳1, 刘文博1   

  1. 1.哈尔滨工程大学 机电工程学院,哈尔滨 150001;
    2.南京模拟技术研究所,南京 210016
  • 收稿日期:2014-06-24 出版日期:2016-07-20 发布日期:2016-07-20
  • 作者简介:赵刚(1957-),男,教授,博士生导师.研究方向:仿生射流减阻技术,智能制造系统.E-mail:zhaoheu@gmail.com
  • 基金资助:
    国家自然科学基金项目(51275102)

Development and experiment of external-rotation vertical jet drag reduction testing platform

ZHAO Gang1, LI Zhao-yuan2, ZHAO Hua-xing1, RAO Yu1, LI Fang1, LIU Wen-bo1   

  1. 1.College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China;
    2.Nanjing Research Institute of Simulation Technology,Nanjing 210016,China
  • Received:2014-06-24 Online:2016-07-20 Published:2016-07-20

摘要: 以同轴圆筒旋转黏度计测量原理为基础,研制了一台适用于测量射流表面阻力的小型实验平台。通过数值模拟技术对外旋立式同轴旋转筒间环流流场进行分析,获取湍流流场中各点速度及压强分布规律,并对流场稳定性予以理论验证;依靠实验平台完成射流减阻测试实验。研究表明:湍流状态下外旋立式环流运动具有较强规律性;实验减阻效果与仿真结果趋势相近,验证了该实验平台的可行性;该实验平台具有体积小、成本低且易于实现样件表面射流等功能。此外,针对两类孔形样件实验研究表明:当外筒转速为3000 r/min,射流速度为2.5 m/s时,代号为a2b10的孔形取得了高达12.78%的减阻率。

关键词: 机械设计, 测试平台, 数值模拟, 射流减阻, 外旋立式, 同轴旋转

Abstract: A small testing platform to measure the resistance of jet surface was developed based on the principle of coaxial cylinder rotational viscometer. The circular flow field in the external-rotation vertical coaxial cylinder was analyzed using numerical simulation. The velocity and pressure distributions of the fluid in turbulence flow were obtained. The stability of the flow field was theoretically analyzed. Jet drag reduction experiments were carried out using the testing platform. Results show that the external-rotation circular flow field has strong regularity under turbulence flow. The effect of drag reduction in the experiment has the same trend as the simulation results, which verifies the feasibility of the testing platform. Compared with similar laboratory equipment for measuring the resistance between fluid and solid, the test platform has the advantage of smaller volume, lower cost, and is able to realize the function jet surface models. In addition, Experiment results with two kinds of jet hole shape show that the sample with a2b10 hole shape has good drag reduction effect when the external-rotation speed is 3000 r/min and the jet velocity is 2.5 m/s, the max drag reduction rate is 12.78%.

Key words: mechanical design, testing platform, numerical simulation, jet drag reduction, external-rotation vertical, coaxial rotation

中图分类号: 

  • TH113.2
[1] Pereira A S, Andrade R M, Soares E J. Drag reduction induced by flexible and rigid molecules in a turbulent flow into a rotating cylindrical double gap device: Comparison between Poly (ethylene oxide), Polyacrylamide, and Xanthan Gum[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 202: 72-87.
[2] Nouri N M, Bakhsh M S, Sekhavat S. Analysis of shear rate effects on drag reduction in turbulent channel flow with superhydrophobic wall[J]. Journal of Hydrodynamics, Series B, 2013, 25(6): 944-953.
[3] Cusher A, Gopalarathnam A. Drag reduction on aircraft configurations with adaptive lifting surfaces[J]. Aerospace Science and Technology, 2014, 34(4):35-44.
[4] Chen H, Rao F, Shang X, et al. Biomimetic drag reduction study on herringbone riblets of bird feather[J]. Journal of Bionic Engineering, 2013, 10(3): 341-349.
[5] 谷云庆, 赵刚, 赵华琳, 等. 仿鲨鱼鳃部射流减阻特性的仿真研究[J]. 兵工学报, 2012, 33(10): 1230-1236.
Gu Yun-qing, Zhao Gang, Zhao Hua-lin, et al. Simulation study on drag reduction characteristics of bionic jet flow based on shark gill[J]. Acta Armamentarii, 2012, 33(10): 1230-1236.
[6] reduction of non-smooth bionic jet surface[J]. Ocean Engineering,2014,81:50-57.
[7] Mycek P, Gaurier B, Germain G, et al. Experimental study of the turbulence intensity effects on marine current turbines behaviour, part I: one single turbine[J]. Renewable Energy, 2014, 66: 729-746.
[8] Pu J H, Shao S, Huang Y. Numerical and experimental turbulence studies on shallow open channel flows[J]. Journal of Hydro-environment Research, 2014,8(1):9-19.
[9] Longo S, Chiapponi L, Clavero M, et al. Study of the turbulence in the air-side and water-side boundary layers in experimental laboratory wind induced surface waves[J]. Coastal Engineering, 2012, 69: 67-81.
[10] 谷云庆. 仿生射流表面减阻性能研究[D]. 哈尔滨: 哈尔滨工程大学机电工程学院, 2013.
Gu Yun-qing. Drag reduction characteristics of bionic jet surface[D]. Harbin: College of Mechanical and Electrical Engineering,Harbin Engineering University, 2013.
[11] 陈惠钊. 粘度测量[M]. 北京: 中国计量出版社, 2003: 56-163.
[12] 湛含辉, 成浩, 刘建文, 等. 二次流原理[M]. 长沙: 中南大学出版社, 2006:127-145.
[13] 吴波. 泰勒库特流数值模拟方法的研究[D]. 武汉:华中科技大学能源与动力工程学院, 2012.
Wu Bo. The method of numerical simulation study on the Taylor-Couette flow[D]. Wuhan: School of Energy and Power Engineering,Huazhong University of Science and Technology, 2012.
[14] Jie Jeng, Zhu Ke-Qin. Numerical simulation of Taylor Couette flow of Bingham fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(19-20): 1161-1170.
[1] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[2] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[3] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[4] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[5] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[6] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[7] 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[8] 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[9] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[10] 孙秀荣, 董世民, 王宏博, 李伟成, 孙亮. 整体抽油杆柱在油管内空间屈曲的多段式仿真模型对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[11] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[12] 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[13] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[14] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[15] 李锐, 张路阳, 刘琳, 武粤元, 陈世嵬. 基于相似理论的三跨桥梁磁流变隔振[J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[3] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[4] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .
[5] 陈思国, 姜旭, 王健, 刘衍珩, 邓伟文, 邓钧忆. 车载自组网与通用移动通信系统混杂网络技术[J]. 吉林大学学报(工学版), 2013, 43(03): 706 -710 .
[6] 孟超, 孙知信, 刘三民. 基于云计算的病毒多执行路径[J]. 吉林大学学报(工学版), 2013, 43(03): 718 -726 .
[7] 仙树, 郑锦, 路兴, 张世鹏. 基于内容转发模型的P2P流量识别算法[J]. 吉林大学学报(工学版), 2013, 43(03): 727 -733 .
[8] 吕源治, 王世刚, 俞珏琼, 王小雨, 李雪松. 基于柱透镜光栅的虚模式下一维集成成像显示特性[J]. 吉林大学学报(工学版), 2013, 43(03): 753 -757 .
[9] 王丹, 李阳, 年桂君, 王珂. 非均质度量掩蔽函数在空域水印中的应用[J]. 吉林大学学报(工学版), 2013, 43(03): 771 -775 .
[10] 冯琳函, 钱志鸿, 尚克诚, 朱爽. 基于IEEE802.15.4标准的改进型隐藏节点冲突避免策略[J]. 吉林大学学报(工学版), 2013, 43(03): 776 -780 .