吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 908-916.doi: 10.13229/j.cnki.jdxbgxb201703030

• • 上一篇    下一篇

转矩波动下电动轮系统机电耦合振动特性

毛钰, 左曙光, 林福   

  1. 同济大学 新能源汽车工程中心,上海 201804
  • 收稿日期:2016-01-22 出版日期:2017-05-20 发布日期:2017-05-20
  • 通讯作者: 左曙光(1968-),男,教授,博士生导师.研究方向:汽车系统动力学与控制.E-mail:sgzuo@tongji.edu.cn
  • 作者简介:毛钰(1992-),男,博士研究生.研究方向:电动轮系统振动与控制.E-mail:maoyu1224@163.com
  • 基金资助:
    国家自然科学基金项目(51375343); 上海市教委科研创新项目(15ZZ015)

Electromechanical coupled vibration characteristics of electric wheel under torque ripple

MAO Yu, ZUO Shu-guang, LIN Fu   

  1. Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China
  • Received:2016-01-22 Online:2017-05-20 Published:2017-05-20

摘要: 针对转矩波动下电动轮系统机电耦合振动问题,推导了d/q轴坐标系下考虑永磁体磁场谐波的永磁同步电机电磁转矩数学模型以反映轮毂电机转矩波动特征。基于电动轮扭转和纵向耦合振动方程分析了电动轮系统固有特性,考虑电流闭环的影响,并集成转矩模型和振动方程建立了电动轮系统机电耦合模型。基于机电耦合模型分析了耦合对转矩波动和系统振动特性的影响规律,结果表明:电机转子的转速波动在电动轮旋转模态频率处会对电机转矩波动产生负反馈削弱效果;机电耦合主要会改变电动轮耦合系统第三阶模态阻尼比进而影响振动特性,而且阻尼比随磁链的增加而线性增加,随电感的增加而下降直至趋于稳定。因此,合理选取轮毂电机电磁参数对抑制电动轮系统振动有一定的意义。

关键词: 自动控制技术, 车辆工程, 转矩波动, 电动轮系统, 机电耦合振动, 模态阻尼比

Abstract: In view of the electromechanical-coupled vibration problem of electric wheel, the electromagnetic torque of permanent magnet synchronous motor is derived in taking account the effects of space harmonics of the permanent magnetic field. Then, based on the equations of coupled torsional and horizontal vibration, the inherent characteristics of the electric wheel system are analyzed. The electromechanical-coupled vibration model of the electric wheel is established by introducing closed-loop control of d/q axis current and combining the electromagnetic torque model and vibration equations. Based on this model the influence rules of electromechanical coupling effects on torque ripple and vibration performance are studied. Results show that the speed fluctuation of the rotor arising from torque ripple will in turn exert an effect of weakening on the torque ripple, especially at the rotating modal resonant operating condition of the electric wheel. The third modal damping ratio of the electric wheel coupling system is evidently influenced by the electromechanical coupling effects and varies with electromagnetic parameters, among which the magnet flux linkage has the largest impact.

Key words: automatic control technology, vehicle engineering, torque ripple, electric wheel system, electromechanical coupled vibration, modal damping ratio

中图分类号: 

  • TP29
[1] Huang Xiao-yu, Wang Jun-min. Model predictive regenerative braking control for lightweight electric vehicles with in wheel motors[J]. Proceedings of the Institution of Mechanical Engineerings Part D: Journal of Automobile Engineering,2012,226(9):1220-1232.
[2] Chen Yan, Wang Jun-min. Design and evaluation on electric differentials for overactuated electric ground vehicles with four independent in-wheel motors[J]. IEEE Transactions on Vehicular Technology,2012,61(4):1535-1542.
[3] Wang Rong-rong, Chen Yan, Feng Dai-wei,et al. Development and performance characterization of an electric ground vehicle with independently-actuated in-wheel motors[J]. Journal of Power Sources,2011,196(8):3962-3971.
[4] Song Zi-you, Li Jian-qiu, Wei Yin-tao, et al. Interaction of in-wheel permanent magnet synchronous motor with tire dynamics[J]. Chinese Journal of Mechanical Engineering,2015,28(3):470-478.
[5] Li Jian-qiu, Song Zi-you, Wei Yin-tao, et al. Influence of tire dynamics on slip ratio estimation of independent driving wheel system[J]. Chinese Journal of Mechanical Engineering,2014,27(6):1203-1210.
[6] 左曙光,段向雷,吴旭东. 电动轮-悬架系统台架振动特性试验分析[J]. 振动与冲击,2014,33(12):165-187.
Zuo Shu-guang,Duan Xiang-lei,Wu Xu-dong. Vibration test analysis of a electric wheel-suspension system on a test bed[J]. Journal of Vibration and Shock,2014,33(12):165-187.
[7] 陈贵清,杨翊仁,邱家俊. 水电机组转子轴系扭振零频的计算和共振分析[J]. 西南交通大学学报,2002,37(1):44-48.
Chen Gui-qing, Yang Yi-ren, Qiu Jia-jun. Hydrogenetator rotors: zeros frequency of torsional vibration and resonance[J]. Journal of Southwest Jiaotong University,2002,37(1):44-48.
[8] 徐进友,刘建平,宋轶民,等. 考虑电磁激励的水轮发电机组扭转振动分析[J]. 天津大学学报,2008,41(12):1411-1416.
Xu Jin-you, Liu Jian-ping, Song Yi-min, et al. Torsional vibration analysis of hydrogenerators considering electromagnetic excitation[J]. Journal of Tianjin University,2008,41(12):1411-1416.
[9] Liu Shuang, Zhao Shuang-shuang, Sun Bao-ping, et al. Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system[J]. Chinese Physics B,2014,23(9):094501.
[10] Chen Xing, Hu Ji-bin, Peng Zeng-xiong, et al. Nonlinear torsional vibration characteristics of PMSM for HEV considering electromagnetic excitation[J]. International Journal of Applied Electromagnetics and Mechanics,2015,49(1):9-21.
[11] Zhu Z Q, Howe D, Botle E, et al. Instantaneous magnetic field distribution in brushless permanent DC motors, Part Ι: open-circuit field[J]. IEEE Transactions on Magnetics,1993,29(1):124-135.
[12] 李景灿,廖勇. 考虑饱和及转子磁场谐波的永磁同步电机模型[J]. 中国电机工程学报,2011,31(3):60-66.
Li Jing-can, Liao Yong. Model of permanent magnet synchronous motor considering saturation and rotor flux harmonics[J]. Proceedings of the CSEE,2011,31(3):60-66.
[13] 陈益广,潘玉玲,贺鑫. 永磁同步电机分数槽集中绕组磁动势[J]. 电工技术学报,2010,25(10):30-36.
Chen Yi-guang, Pan Yu-ling, He Xin. Magnetomotive force in permanent magnet synchronous machine with concentrated fractional-slot winding[J]. Transactions of China Electrotechnical Society,2010,25(10):30-36.
[14] Bianchi N, Bolognani S, Grezzani G. Design considerations for fractional-slot winding configurations of synchronous machines[J]. IEEE Transactions on Industrial Application,2006,42(4):997-1006.
[15] 左曙光,段向雷,吴旭东. 电动轮刚性环耦合特性模型建模与分析[J]. 同济大学学报:自然科学版,2014,42(10):1578-1585.
Zuo Shu-guang, Duan Xiang-lei, Wu Xu-dong. Modeling and analysis of rigid ring coupling model of electric wheel[J]. Journal of Tongji University(Natural Science), 2014,42(10):1578-1585.
[16] 董恒,王辉,黄科元. 永磁同步电动机驱动系统数字PI调节器参数设计[J]. 电气传动,2009,39(1):7-10.
Dong Heng, Wang Hui, Huang Ke-yuan. Design of PMSM drive system digital PI adjuster parameters[J]. Electric Drive,2009,39(1):7-10.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[7] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[8] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[9] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[10] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[11] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[12] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[13] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[14] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[15] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!