吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 1534-1541.doi: 10.13229/j.cnki.jdxbgxb201705027

• • 上一篇    下一篇

S355钢/6005A铝合金瞬间液相扩散连接接头组织与性能

谷晓燕, 刘亚俊, 孙大千, 徐锋, 孟令山, 高帅   

  1. 吉林大学 材料科学与工程学院,长春 130022
  • 收稿日期:2016-12-15 出版日期:2017-09-20 发布日期:2017-09-20
  • 作者简介:谷晓燕(1979-),女,副教授,博士.研究方向:先进材料连接.E-mail:guxy@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51275204)

Microstructures and mechanical properties of transient liquid phase diffusion bonded S355 steel/6005A aluminum alloy joint

GU Xiao-yan, LIU Ya-jun, SUN Da-qian, XU Feng, MENG Ling-shan, GAO Shuai   

  1. College of Materials Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2016-12-15 Online:2017-09-20 Published:2017-09-20

摘要: 采用纯Cu箔作中间层,将S355钢与6005A铝合金异种金属进行了瞬间液相(TLP)扩散连接。运用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)以及万能试验机对接头进行了系统地分析。结果表明:连接条件为580 °C和15 min时,接头界面出现分层结构;随着保温时间的延长和加热温度的升高,接头界面扩散区宽度逐渐变大,分层现象不明显,但在近钢侧的Fe-Al金属间化合物层会有裂纹出现。近钢侧Fe-Al金属间化合物层的显微硬度可达439 HV。当连接条件为580 °C和30 min时,接头拉剪强度最高,为77 MPa。添加中间层Cu箔,连接初期产生共晶液相润湿钢和铝的表面,连接后期阻碍Fe元素和Al元素之间的互扩散,从而保证了接头的质量。

关键词: 材料合成与加工工艺, S355钢, 6005A铝合金, 瞬间液相扩散连接, Cu中间层, 金属间化合物

Abstract: Transient liquid phase diffusion bonding of steel/aluminum alloy dissimilar metal joints was carried out with pure Cu foil as the interlayer. The microstructure and mechanical properties of the joints were analyzed by Scanning Electron Microscope (SEM), Energy Dispersion Spectrometer (EDS), X-ray Diffraction (XRD) and instron testing machine. Results show that, under the bonding condition of 580 ℃ and 15 min, layered structure appears in the joint. With the increase in holding time and bonding temperature, the width of diffusion zone increases, which indicates that sufficient reaction occurs at the interface, and the layered structure can not be observed obviously. However, cracks appear in the Fe-Al intermetallic compound layer near the steel side. The microhardness of the Fe-Al intermetallic compound layer adjacent to the steel side reaches 439 HV. When the holding time and bonding temperature are 30 min and 580 ℃, the joint shear strength reaches the highest, up to 77 MPa. At the beginning of the joining process, Cu foil added generates eutectic liquid to wet the surface of steel and aluminum alloy and blocks the interdiffusion between Fe and Al elements in the later joining process. Thus the joint quality can be ensured.

Key words: materials synthesis and processing technology, S355 steel, 6005A aluminum alloy, transient liquid phase diffusion bonding, Cu interlayer, intermetallic compounds

中图分类号: 

  • TG456.9
[1] 东涛, 刘嘉禾. 我国低合金钢及微合金钢的发展、问题和方向[J]. 钢铁, 2000, 35(11): 71-75.
Dong Tao, Liu Jia-he. Progress, problems and forecast of low alloy and microalloy steels in China[J]. Iron and Steel, 2000, 35(11): 71-75.
[2] 东涛, 孟繁茂, 博俊岩. 微合金化钢技术基础[M]. 北京:北京理工大学出版社, 2001: 215.
[3] 季凯, 祖国胤, 姚广春. 高速列车用6005A铝合金厚板的焊接工艺[J]. 东北大学学报:自然科学版, 2010, 31(10): 1457-1461.
Ji Kai, Zu Guo-yin, Yao Guang-chun. Welding parameters of 6005A aluminum alloy for new highspeedtrain[J]. Journal of Northeastern University (Natural Science), 2010, 31(10): 1457-1461.
[4] 雷振, 秦国梁, 林尚扬,等. 铝与钢异种金属焊接的研究与发展概况[J]. 焊接, 2006 (4): 16-20.
Lei Zhen, Qin Guo-liang, Lin Shang-yang, et al. Research and developments of dissimiliar metals welding of aluminum and steel[J]. Welding and Joining, 2006 (4): 16-20.
[5] Mathieu A, Shabadi R, Deschamps A,et al. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire)[J]. Optics and Laser Technology, 2007, 39(3): 652-661.
[6] 万春芬, 周明召. 铝-钢异种材料焊接工艺的研究进展[J].热加工工艺, 2014, 43(3): 8-11.
Wang Chun-fen, Zhou Ming-zhao. Research progress of welding technology of aluminum and steel dissimilar material[J]. Hot Working Technology, 2014, 43(3): 8-11.
[7] 李亚江, 吴娜. 钢/铝异种金属焊接的研究现状[J]. 焊接, 2010 (3): 5-12.
Li Ya-jiang, Wu Na. Research progress on the welding of steel and aluminum dissimilar metals[J]. Welding and Joining, 2010 (3): 5-12.
[8] 陈树海, 马柯, 黄继华,等. 钢/铝异种金属双熔池TIG熔钎焊接头的显微组织与力学性能[J]. 中国有色金属学报, 2011, 21(12): 3076-3081.
Chen Shu-hai, Ma Ke, Huang Ji-hua, et al. Microstructure and mechanical property of joint by TIG welding-brazing with dual weld pools for steel/ aluminum dissimilar metals[J]. The China Journal of Nonferrous Metals, 2011, 21(12): 3076-3081.
[9] 宋建玲, 林三宝, 杨春利,等. 特种钎剂辅助铝/钢异种合金TIG熔钎焊[J]. 焊接学报, 2010, 31(2): 45-48.
Song Jian-ling, Lin San-bao, Yang Chun-li,et al. TIG welding-brazing of special flux assisted aluminum-steel dissimilar alloys[J]. Transactions of the China Welding Institution, 2010, 31(2):45-48.
[10] 石玗, 温俊霞, 黄健康,等. 基于旁路耦合电弧的铝钢MIG熔钎焊研究[J]. 机械工程学报, 2011, 47(16): 25-29.
Shi Yu, Wen Jun-xia, Huang Jian-kang, et al. Study on DE-GMAW MIG-brazing method for bonding steel with aluminum[J]. Journal of Mechanical Engineering, 2011, 47(16): 25-29.
[11] 秦国梁, 苏玉虎, 王术军,等. 铝合金/镀锌钢脉冲MIG电弧熔钎焊接头组织与性能[J]. 金属学报, 2012, 48(8): 1018-1024.
Qin Guo-liang, Su Yu-hu, Wang Shu-jun, et al. Microstructures and properties of pulsed MIG arc brazed-fusion welded joint of Al alloy and galvanized steel[J]. Acta Metallurgica Sinica, 2012, 48(8): 1018-1024.
[12] 李春玲, 樊丁, 王斌, 等. 5A06铝合金/镀锌钢预置涂粉对接激光熔钎焊组织与性能[J].吉林大学学报: 工学版, 2016, 46(2):516-521.
Li Chun-ling, Fan Ding, Wang Bin, et al. 5A06 aluminum alloy and galvanized steel butt welding-brazing by laser with preset filler powder[J].Journal of Jilin University(Engineering and Technology Edition), 2016, 46(2): 516-521.
[13] 王敬. Fe/Al异种金属扩散焊界面形成机理研究[D]. 镇江: 江苏科技大学材料科学与工程学院, 2011.
Wang Jing. The formation mechanism research of Fe/Al dissimilar materials bonding interface[D]. Zhengjiang: School of Materials Science and Engineering, Jiangsu University of Science and Technology, 2011.
[14] Saleha M I, Khanb T I, Rovena H J. Transient liquid phase bonding of AA-6063 to UNS S32304 using Cu interlayer[J]. Procedia Chemistry, 2016, 19: 517-524.
[15] Wu Ming-fang, Si Nai-chao, Chen Jian. Contact reactive brazing of Al Alloy/Cu/stainless steel joints and dissolution behaviors of interlayer[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5): 1035-1039.
[16] Springer H, Kostka A, Payton E J, et al. On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys[J]. Acta Materialia, 2011, 59(4): 1586-1600.
[17] Reddy G M, Rao A S, Mohandas T. Role of electroplated interlayer in continuous drive friction welding of AA6061 to AISI 304 dissimilar metals[J]. Science and Technology of Welding and Joining, 2008, 13(7): 619-628.
[18] 陈思杰, 赵丕峰. 钢/铝异种金属TLP扩散焊工艺与组织[J]. 焊接, 2013(5): 32-35.
Chen Si-jie, Zhao Pi-feng. Process and microstructure of TLP diffusion welded steel/aluminum dissimilar metals[J]. Welding and Joining, 2013(5): 32-35.
[19] Wojarski L, Tillmann W. TLP brazing of aluminum to steel using PVD-deposited interlayer[J]. Weld World, 2014, 58(5): 673-680.
[20] 王海东. 压力在TLP焊接过程中的应用[D]. 兰州: 兰州理工大学材料科学与工程学院, 2011.
Wang Hai-dong. The role of pressure in the TLP welding process[D]. Lanzhou: School of Materials Science and Engineering, Lanzhou University of Technology, 2011.
[21] 张远辉, 王非森, 张安民.瞬间液相扩散连接工艺参数及应用连接进展[J]. 热加工工艺, 2010, 39(9): 163-166.
Zhang Yuan-hui, Wang Fei-sen, Zhang An-min. Research progress and processing parameter of transient liquid-phase bonding[J]. Hot Working Technology, 2010, 39(9): 163-166.
[22] 张伟华. 铝合金/高强钢异种金属电阻点焊研究[D]. 长春:吉林大学材料科学与工程学院, 2011.
Zhang Wei-hua. Study on resistance spot welding of dissimilar materials of aluminum alloyand high strength steel[D].Changchun: College of Materials Science and Engineering, Jilin University, 2011.
[23] 吴铭方. 铝合金与不锈钢低温扩散焊及界面主组元扩散行为研究[D]. 镇江: 江苏大学材料科学与工程学院, 2011.
Wu Ming-fang. Study on diffusion welding with low temperature of Al alloy and stainless steel and diffusion behavior of main elements[D]. Zhenjiang: School of Materials Science and Engineering, Jiangsu University, 2011.
[24] Song J L, Lin S B, Yang C L, et al. Brazability of dissimilar metals tungsten inert gas butt welding-brazing between aluminum alloy and stainless steel with Al-Cu filler metal[J]. Materials and Design, 2010, 31(5): 2637-2642.
[1] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[2] 胡志清, 颜庭旭, 李洪杰, 吕振华, 廖伟, 刘庚. 深冷处理对铝合金薄板冲剪成形性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1524-1530.
[3] 郑孝义, 孙大千, 李欣, 都桂刚, 辛伟达, 任振安. NbAl3强化Al-Nb熔覆层的组织与性能[J]. 吉林大学学报(工学版), 2018, 48(5): 1531-1536.
[4] 邱小明, 王银雪, 姚汉伟, 房雪晴, 邢飞. 基于灰色关联的DP1180/DP590异质点焊接头工艺参数优化[J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[5] 陈俊甫, 管志平, 杨昌海, 牛晓玲, 姜振涛, 宋玉泉. 金属棒试样拉伸和扭转试验应变范围和力学特性对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
[6] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[7] 刘子武, 李剑峰. 叶片材料FV520B再制造熔覆层冲蚀损伤行为及评价[J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[8] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[9] 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[10] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[11] 王辉, 周杰, 熊煜, 陶亚平, 向荣. 基于逆向工程的复杂曲面冲压件回弹补偿[J]. 吉林大学学报(工学版), 2017, 47(6): 1842-1847.
[12] 王春生, 邹丽, 杨鑫华. 基于邻域粗糙集的铝合金焊接接头疲劳寿命影响因素分析[J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
[13] 邢海燕, 葛桦, 李思岐, 杨文光, 孙晓军. 基于模糊隶属度最大似然估计的焊缝隐性缺陷磁记忆信号识别[J]. 吉林大学学报(工学版), 2017, 47(6): 1854-1860.
[14] 谷诤巍, 张文学, 吕萌萌, 王伟, 徐虹, 李欣. 宽翼边U型截面不锈钢型材拉弯成形缺陷控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1165-1170.
[15] 寇淑清, 宋玮峰, 石舟. 36MnVS4连杆裂解加工模拟及缺陷分析[J]. 吉林大学学报(工学版), 2017, 47(3): 861-868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .