吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 1542-1547.doi: 10.13229/j.cnki.jdxbgxb201705028

• 论文 • 上一篇    下一篇

高性能金属铝的制备、微观结构及其热稳定性

汤华国1, 2, 3, 马贤锋1, 2, 赵伟1, 2, 刘建伟1, 2, 赵振业1, 2   

  1. 1.中国科学院 长春应用化学研究所,长春 130021;
    2.中国科学院 稀土资源利用国家重点实验室,长春 130021;
    3.中国科学院大学,北京100049
  • 收稿日期:2016-05-10 出版日期:2017-09-20 发布日期:2017-09-20
  • 作者简介:汤华国(1978-),男,副研究员,博士研究生.研究方向:高性能铝合金.E-mail:laotang@ciac.ac.cn
  • 基金资助:

    吉林省科技攻关重点项目(20150204002GX)

Synthesis microstructure and thermal properties of high performance bulk Al

TANG Hua-guo1, 2, 3, MA Xian-feng1, 2, ZHAO Wei1, 2, LIU Jian-wei1, 2, ZHAO Zhen-ye1, 2   

  1. 1.Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, China;
    2.State Key Laboratory of Rare Earth Resource Utilization, Chinese Academy of Sciences, Changchun 130021, China;
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-05-10 Online:2017-09-20 Published:2017-09-20

摘要:

利用机械制粉、冷等静压和快速压锻工艺制备得到了一种耐热金属铝,该材料晶粒尺寸为0.6~4 μm,室温抗拉强度为536 MPa, 达到商业高强铝合金的性能水平,同时材料具有优异的高温性能。通过4320 h高温热暴露实验研究发现,材料在200、300、350 ℃下的持久强度分别达到为381、242和178 MPa,较热暴露实验之前的性能只分别下降了1.3 %、1.5 %和1.8 %,其耐高温机制是材料在制备过程引入的第二相夹杂在晶界间,起到抑制晶粒长大的作用。

关键词: 金属材料, 超细金属铝, 机械球磨, 快速压锻, 热稳定性

Abstract:

Heat resistant bulk Al was prepared by mechanical milling, cold isostatic pressing and press-forming technique. The bulk Al possesses stable microstructure, with grain size between 0.6 and 4 μm, and the ultimate tensile strength, 536 MPa, surpasses that of most commercial Al alloys, especially at high temperature. The heat exposure experiment was carried out at 200 ℃, 300 ℃ and 350 ℃ for 4320 h. The high temperature endurance strength is 381 MPa, 242 MPa and 178 MPa corresponding to 200 ℃, 300 ℃ and 350 ℃ respectively. The pinning action of the second-phase dispersoids in bulk Al highly restrains grain growth during the process of hating.

Key words: metallic materials, bulk ultrafine Al, mechanical milling, press-forming, thermal stability

中图分类号: 

  • TG3
[1] 杨悦, 陈彬. SiC纳米颗粒对6060型铝合金微弧氧化膜组织结构及耐蚀性能的影响[J]. 吉林大学学报:工学版,2011, 41(1):106-110.
Yang Yue, Chen Bin. Effects of SiC nano-particles on microstructure and the corrosion resistance of micro-arc oxidation films produced on aluminium alloy[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(1): 106-110.
[2] Frank R E, Hawk J A, Effect of very high temperatures on the mechanical properties of Al-Fe-V-Si alloy[J].Scr Metall, 1989, 23:113-118.
[3] Srivastava A K, Ojha S N, Ranganathan S. Microstructural features and heat flow analysis of atomized and spray-formed Al-Fe-V-Si alloy[J]. Metallurgical and Materials Transactions A, 1998, 29(8):2205-2219.
[4] Lee S,Lee D Y,Kimm N J. Correlation of microstructure and fracture toughness of a rapid solidification-powder metallurgy Al-Fe-V-Si alloy[J]. Materials Science & Engineering A, 1991, 147(1):33-44.
[5] Yan Q, Fu D, Deng X, et al. Tensile deformation behavior of spray-deposited FVS0812 heat-resistant aluminum alloy sheet at elevated temperatures[J]. Materials Characterization, 2007, 58(6):575-579.
[6] Gilman P S, Rateick R G, Testa A. The fabrication of rapidly solidified high temperature aluminum alloys[J]. Adv Powder Metall,1991,6:47-57.
[7] Das S K, Bye R L, Gilman P S. Large scale manufacturing of rapidly solidified aluminum alloys[J]. Materials Science & Engineering A, 1991, 134(12):1103-1106.
[8] Chen Z,Huang P,Jiang X,et al. A novel multi-layer spray deposition technology[J]. Journal of Central South University, 1996, 3(2):110-116.
[9] Rizaneh S,Borhani G H,Tavoosi M. Synthesis and characterization of Al (Al 2 O 3 -TiB 2 /Fe) nanocomposite by means of mechanical alloying and hot extrusion processes[J]. Adv Powder Technol, 2014, 25: 1693-1698.
[10] Deaquino-Lara R, Gutiérrez-Castañeda E, Estrada-Guel I, et al. Structural characterization of aluminium alloy 7075-graphite composites fabricated by mechanical alloying and hot extrusion[J]. Mater Des, 2014, 53:1104-1111.
[11] Deaquino-Lara R, Estrada-Guela I, Hinojosa-Ruizc G, et al. Synthesis of aluminum alloy 7075-graphite composites by milling processes and hot extrusion[J]. Journal of Alloys & Compounds, 2011, 509(6):284-289.
[12] Soltani N, Nodooshan H R J, Bahrami A, et al. Effect of hot extrusion on wear properties of Al-15 wt.% Mg 2 Si in situ metal matrix composites[J]. Mater Des, 2014, 53: 774-781.
[13] Tang H G, Cheng Z Q, Liu J W, et al. Preparation of a high strength Al-Cu-Mg alloy by mechanical alloying and press-forming[J]. Materials Science & Engineering A, 2012, 550:51-54.
[14] 汤华国,赵伟,刘建伟,等. 细晶金属铝的制备及力学性能[J].应用化学, 2015, 32(9):1070-1074.
Tang Hua-guo, Zhao Wei, Liu Jian-wei, et al. Synthesis and mechanical performance of bulk ultrafine Al[J]. Chinese Journal of Applied Chemistry, 2015, 32(9):1070-1074.
[15] Kennedy A R, Wyatt S M. The effect of processing on the mechanical properties and interfacial strength of aluminium/TiC MMCs[J]. Comp Sci Technol, 2000, 60:307-314.
[16] Cintas J, Montes J M, Cuevas F G, et al. Heat-resistant bulk nanostructured P/M aluminium[J]. J Alloys Compd, 2008, 458: 282-285.
[1] 关庆丰,张福涛,彭韬,吕鹏,李姚君,许亮,丁佐军. 含硼、钴9%Cr耐热钢的热变形行为[J]. 吉林大学学报(工学版), 2018, 48(6): 1799-1805.
[2] 关庆丰, 董书恒, 郑欢欢, 李晨, 张从林, 吕鹏. 强流脉冲电子束作用下45#钢表面Cr合金化[J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[3] 赵宇光, 杨雪慧, 徐晓峰, 张阳阳, 宁玉恒. Al-10Sr变质剂状态、变质温度及变质时间对ZL114A合金组织的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[4] 关庆丰, 张远望, 孙潇, 张超仁, 吕鹏, 张从林. 强流脉冲电子束作用下铝钨合金的表面合金化[J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[5] 杨晓红, 杭文先, 秦绍刚, 刘勇兵, 刘利萍. H13钢激光熔覆钴基复合涂层的组织及耐磨性[J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
[6] 关庆丰, 黄尉, 李怀福, 龚晓花, 张从林, 吕鹏. 强流脉冲电子束诱发的Cu-C扩散合金化[J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[7] 张学广, 刘纯国, 郑愿, 江仲海, 李湘吉. 基于延性损伤和剪切损伤的铝合金成形极限预测[J]. 吉林大学学报(工学版), 2016, 46(5): 1558-1566.
[8] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[9] 李春玲, 樊丁, 王斌, 余淑荣. 5A06铝合金/镀锌钢预置涂粉对接激光熔钎焊组织与性能[J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[10] 张家陶, 赵宇光, 谭娟. 初始组织对电脉冲处理逆变奥氏体晶粒细化效果的影响[J]. 吉林大学学报(工学版), 2016, 46(1): 193-198.
[11] 张志强, 贾晓飞, 袁秋菊. 基于Yoshida-Uemori模型的TRIP800高强钢回弹分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1852-1856.
[12] 张志强, 贾晓飞, 赵勇, 李湘吉. 高强度硼钢淬火界面热交换系数的实验与模拟[J]. 吉林大学学报(工学版), 2015, 45(4): 1195-1199.
[13] 关庆丰, 李艳, 侯秀丽, 杨盛志, 王晓彤. 固溶态Mg-Gd-Y-Nd合金强流脉冲电子束表面改性[J]. 吉林大学学报(工学版), 2015, 45(4): 1200-1205.
[14] 马云海, 尚文博, 范雪莹, 高知辉, 佟金, 闫志峰, 常志勇. 仿骨β相磷酸三钙多孔生物陶瓷制备及降解[J]. 吉林大学学报(工学版), 2015, 45(4): 1367-1374.
[15] 段兴旺,刘建生. 316LN钢高温塑性及其断口特征[J]. 吉林大学学报(工学版), 2015, 45(2): 494-500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .