吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 812-820.doi: 10.13229/j.cnki.jdxbgxb20170456

• 论文 • 上一篇    下一篇

面向水上机器人的水黾运动观测

田为军1, 王骥月1, 李明1, 张兴旺2, 张勇3, 丛茜1,4   

  1. 1.吉林大学 工程仿生教育部重点实验室,长春 130022;
    2.山东科瑞石油装备有限公司,山东 东营 257067;
    3.长春光华学院 电气信息学院,长春 130033;
    4.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
  • 收稿日期:2017-05-08 出版日期:2018-05-20 发布日期:2018-05-20
  • 通讯作者: 丛茜(1963-),女,教授,博士生导师.研究方向:工程仿生学.E-mail:congqian@jlu.edu.cn
  • 作者简介:田为军(1982-),男,副教授,博士.研究方向:工程仿生学.E-mail:tianweijun@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51305157;51775234); 吉林大学工程仿生教育部重点实验室开放基金项目(K201401).

Observation of locomotion of water strider towards water strider robot

TIAN Wei-jun1, WANG Ji-yue1, LI Ming1, ZHANG Xing-wang2, ZHANG Yong3, CONG Qian1,4   

  1. 1.Key Laboratory of Bionic Engineering,Ministry of Education, Jilin University, Changchun 130022,China;
    2.Shandong Kerui Petroleum Equipment Co., Ltd., Dongying 257067,China;
    3.Institute of Electrical Information, Changchun Guanghua University, Changchun 130033,China;
    4.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022,China
  • Received:2017-05-08 Online:2018-05-20 Published:2018-05-20

摘要: 为了研究水黾水上运动时各腿的运动功能特性,采用高速摄像机记录未处理腿、去除前腿、中腿和后腿时水黾的水上运动,并对水黾的纸上运动进行观察。计算水黾各腿的关节角度,探讨水黾各腿在其运动过程中所承担的具体功能。水上直线运动结果表明:水黾前腿与水接触以维持身体平衡;中腿摆动划水,提供前进动力;后腿与水接触,为躯干提供支撑力,并反复开合,配合前腿维持身体平衡,同时配合中腿减少前进阻力。水黾在纸上直线运动时,为减小阻力,以跳跃方式前进,前腿与后腿维持起落平衡,中腿摆动提供动力。部分腿缺失后的水黾,可通过剩余腿的协同代偿调整来实现稳定运动。

关键词: 工程仿生学, 水黾, 高速摄像, 运动机理, 关节角

Abstract: A high speed camera was used to record the locomotion of water strider to investigate its motion characteristics. The locomotion was observed in five situations, including walking on water surface without leg handling, with forelegs removal, with middle legs removal, with hind legs removal, and moving on paper. The joint angles of water strider legs were calculated, and the function of each leg was investigated based on the calculated angles. The results of linear motion on water surface show that the foreleg maintains the body balance by contacting with water; the middle leg provides driving force by paddling; and the hind leg provides support and maintains balance through its swing, and reduces water resistance. When water strider moves on paper, its middle legs provide driving force as it moves on water surface, and its hind legs swing slightly to control the balance during the caprioling and landing. The water strider can move stably through the adjustment of the rest legs after missing some legs.

Key words: bionic engineering, water strider, high speed camera, locomotion mechanism, joint angle

中图分类号: 

  • TB17
[1] Gao Xue-feng, Jiang Lei.Biophysics:water-repellent legs of water striders[J]. Nature,2004,432(7013):36.
[2] Wang Qing-cheng, Yang Xiao-dong, Yang Zhuo-juan.Research on micro and nano structure and wettability for water strider's leg, abdomen, back and wing[J]. Applied Mechanics & Materials,2013,459:547-550.
[3] 张兴旺. 水黾腿润湿性及水黾运动特性研究[D]. 长春:吉林大学生物与农业工程学院,2014.
Zhang Xing-wang.Research on wettability of leg and motion characteristic of water strider[D]. Changchun:College of Biological and Agricultural Engineering, Jilin University,2014.
[4] 王庆成. 超疏水生物水面超大承载机制及其仿生研究[D]. 长春:长春理工大学机电工程学院,2012.
Wang Qing-cheng.The Mechanism of the super-supporting force of super-hydrophobic biological and its bionic research[D]. Changchun: College of Mechanical and Electric Engineering, Changchun University of Science and Technology,2012.
[5] Bush J W M,Hu D L,Prakash M. The integument of water-walking arthropods: form and function[J]. Advances in Insect Physiology,2007,34(147):117-192.
[6] 田为军,张兴旺,王骥月,等. 水黾多腿并排表面的疏水性能[J]. 高等学校化学学报,2014,35(8):1726-1730.
Tian Wei-jun,Zhang Xing-wang,Wang Ji-yue,et al.Surface properties of hydrophobic side by side water strider legs[J]. Chemical Journal of Chinese Universities,2014,35(8):1726-1730.
[7] Hu D L,Bush J W M. The hydrodynamics of water-walking arthropods[J]. Journal of Fluid Mechanics,2010,644:5-33.
[8] Yabe T,Chinda K,Hiraishi T.Computation of surface tension and contact angle and its application to water strider[J]. Computers & Fluids,2007,36(1):184-190.
[9] Zheng J,Yu K,Zhang J,et al.Modeling of the propulsion hydrodynamics for the water strider locomotion on water surface[J]. Procedia Engineering,2015,126:280-284.
[10] Goodwyn P J P,Wang J,Wang Z,et al. Water striders: the biomechanics of water locomotion and functional morphology of the hydrophobic surface (insecta: hemiptera-heteroptera)[J]. Journal of Bionic Engineering,2008,5(2):121-126.
[11] Takewaki H, Yabe T.The cubic-interpolated pseudo particle (CIP) method: application to nonlinear and multi-dimensional hyperbolic equations[J]. Journal of Computational Physics,1987,70(2):355-372.
[12] Takonobu H,Kodaira K,Takeda H.Water strider's muscle arrangement-based robot[C]∥2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB,Canada,2005:1754-1759.
[13] Suhr S H,Song Y S,Lee S J,et al.Biologically inspired miniature water strider robot[C]∥Robotics: Science and Systems I,Cambridge, Massachusetts,USA,2005:319-326.
[14] Wu L, Yang G, Gui X.Developing strategy based on discussing of the state of the art for a new water strider robot[C]∥2012 Second International Conference on Intelligent System Design and Engineering Application, Sanya,China,2012:674-678.
[15] 何冲. 仿水黾机器人建模及运动特性研究[D]. 天津:河北工业大学机械工程学院,2013.
He Chong.Modeling and kinematics research on water strider robot[D]. Tianjin:School of Mechanical Engineering, Hebei University of Technology,2013.
[16] 王涛. 仿生水黾水面跳跃机器人的研究[D]. 哈尔滨:哈尔滨工业大学机电工程学院, 2015.
Wang Tao.Research on water jumping robot inspired by water strider[D]. Harbin:School of Mechatronics Engineering, Harbin Institute of Technology,2015.
[17] Song Y S, Sitti M.Surface-tension-driven biologically inspired water strider robots: theory and experiments[J]. IEEE Transactions on Robotics,2007,23(3):578-589.
[18] Bai Fan,Wu Jun-tao,Gong Guang-ming,et al.Biomimetic “water strider leg” with highly refined nanogroove structure and remarkable water-repellent performance[J]. ACS Applied Materials & Interfaces,2014,6(18): 16237-16242.
[19] Hu D L, Chan B, Bush J W M. The hydrodynamics of water strider locomotion[J]. Nature,2003,424(6949):663-666.
[20] Yan J H,Zhang X B,Zhao J,et al.A miniature surface tension-driven robot using spatially elliptical moving legs to mimic a water strider's locomotion[J]. Bioinspiration & Biomimetics,2015,10(4):046016.
[21] Zhang X,Yan J,Zhao J,et al.A miniature surface tension-driven robot mimicking the water-surface locomotion of water strider[C]∥2015 IEEE International Conference on Robotics and Automation(ICRA),Seattle,Washington,USA,2015:3172-3177.
[22] Zhang X,Zhao J,Zhu Q,et al.Bioinspired aquatic microrobot capable of walking on water surface like a water strider[J]. ACS Applied Materials & Interfaces,2011,3(7):2630-2636.
[23] Koh J S, Yang E, Jung G P, et al.Biomechanics. Jumping on water: surface tension-dominated jumping of water striders and robotic insects[J]. Science,2015,349(6247):517-521.
[24] Hughes G M.The co-ordination of insect movements. II. The effect of limb amputation and the cutting of commissures in the cockroach (blatta orientalis)[J]. Journal of Experimental Biology,1957,34(3):306.
[25] Wilson D M.Insect walking[J]. Entomology,1966,11(11):103-122.
[26] Delcomyn F.Perturbation of the motor system in freely walking cockroaches. I. Rear leg amputation and the timing of motor activity in leg muscles[J]. Journal of Experimental Biology,1991,156(3):483-502.
[27] Delcomyn F.Perturbation of the motor system in freely walking cockroaches. II. The timing of motor activity in leg muscles after amputation of a middle leg[J]. Journal of Experimental Biology,1991,156(3):503-517.
[28] Delcomyn F.The effect of limb amputation on locomotion in the cockroach periplaneta americana[J]. Journal of Experimental Biology,1971,54(2):453-469.
[29] Zhang Yan,Huang He,Liu Xiang-yang,et al.Kinematics of terrestrial locomotion in mole cricket gryllotalpa orientalis[J]. Journal of Bionic Engineering,2011,8(2):151-157.
[30] Zhang Yan,Zhang Jun-xia,Ren Lu-quan.The terrestrial locomotion of a mole cricket with foreleg amputation[J]. Science China Technological Sciences,2015,58(6):999-1006.
[1] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[4] 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[5] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[6] 王颖, 李建桥, 张广权, 黄晗, 邹猛. 基于多种介质的仿生步行足力学特性[J]. 吉林大学学报(工学版), 2017, 47(2): 546-551.
[7] 葛长江, 叶辉, 胡兴军, 于征磊. 鸮翼后缘噪声的预测及控制[J]. 吉林大学学报(工学版), 2016, 46(6): 1981-1986.
[8] 李梦, 苏义脑, 孙友宏, 高科. 高胎体仿生异型齿孕镶金刚石钻头[J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545.
[9] 梁云虹, 任露泉. 自然生境及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(5): 1746-1756.
[10] 梁云虹, 任露泉. 人类生活及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(4): 1373-1384.
[11] 钱志辉, 苗怀彬, 任雷, 任露泉. 基于多种步态的德国牧羊犬下肢关节角[J]. 吉林大学学报(工学版), 2015, 45(6): 1857-1862.
[12] 邹猛, 于用军, 张荣荣, 魏灿刚, 王会霞. 仿牛角结构薄壁管吸能特性仿真分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1863-1868.
[13] 杨卓娟, 王庆成, 高英, 门玉琢, 杨晓东. 不同溶液对荷叶润湿性能的影响[J]. 吉林大学学报(工学版), 2015, 45(6): 1869-1873.
[14] 田为军, 王骥月, 李明, 陈思远, 刘方圆, 丛茜. 小型水平轴风力机叶片仿生设计[J]. 吉林大学学报(工学版), 2015, 45(5): 1495-1501.
[15] 田桂中, 刘之岭, 周宏根, 宋江超, 朱涛. 家蚕前部丝腺准静态轴向拉伸力学特性[J]. 吉林大学学报(工学版), 2015, 45(3): 872-877.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭孔辉;王爽;丁海涛;张建伟 . 后悬架非对称式橡胶衬套弹性耦合特性[J]. 吉林大学学报(工学版), 2007, 37(06): 1225 -1228 .
[2] 何磊,宗长富,田承伟,吴仁军,张太武. 线控转向汽车直流电机的故障诊断与容错控制[J]. 吉林大学学报(工学版), 2011, 41(03): 608 -612 .
[3] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[4] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[5] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[6] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[7] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[8] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[9] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[10] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .