吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (5): 1466-1474.doi: 10.13229/j.cnki.jdxbgxb20170655

• • 上一篇    下一篇

催化型微粒捕集器碳烟分布及其影响因素

李志军1, 汪昊1, 何丽1, 曹丽娟1, 张玉池2, 赵新顺3   

  1. 1.天津大学 内燃机燃烧学国家重点实验室,天津 300072;
    2.天津市津聿动力科技有限公司, 天津 300221;
    3.广东白云学院 机电工程学院,广州 510450
  • 收稿日期:2017-06-27 出版日期:2018-09-20 发布日期:2018-12-11
  • 作者简介:李志军(1962-),男,教授,博士生导师.研究方向:内燃机排放与控制.E-mail:zhijunli@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(51576140, 51276128);科技部中欧中小企业节能减排发展专项基金项目(SQ2013ZOA100012);清华大学汽车安全与节能国家重点实验室开放基金项目(KF1818)

Soot distribution features and its influence factors in catalytic diesel particulate filte

LI Zhi-jun1, WANG Hao1, HE Li1, CAO Li-juan1, ZHANG Yu-chi2, ZHAO Xin-shun3   

  1. 1.State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China;
    2.Tianjin Jinyu Power Technology Co. Ltd., Tianjin 300221, China;
    3.Faculty of Mechanical and Electrical Engineering, Guangdong Baiyun University,Guangzhou 510450, China
  • Received:2017-06-27 Online:2018-09-20 Published:2018-12-11

摘要: 建立了催化型柴油机微粒捕集器(CDPF)的数学模型,通过相关试验验证了模型的正确性,分析了CDPF排气参数和结构参数对碳烟分布的影响。研究结果表明:壁面层的碳烟质量浓度呈现先急剧上升后缓慢减少的特点;滤饼层的碳烟分布呈现两端高、轴向无量纲位置x=0.3左右的位置最低的分布特性。随着排气参数(温度、流量、氧体积分数、NO2体积分数)的增大,壁面积累碳烟质量浓度减少,其中温度的影响最大;排气流量的增大会使滤饼层碳烟分布最低点位置逐渐向前端移动。结构参数(长径比、进出口孔径比、孔密度)对滤饼层碳烟分布形状影响较大,随着结构参数的增大,滤饼层碳烟分布趋于不均匀,其中孔密度的变化对滤饼层碳烟分布影响最大,孔密度的增大会使最低点位置向后端移动;进出口孔径的增大使最低点位置向前端移动。

关键词: 动力机械工程, 催化型微粒捕集器, 碳烟分布, 排气参数

Abstract: A mathematical model of Catalytic Diesel Particulate Filter (CDPF) was built up. The exhaust parameters and structure parameters were analyzed, and the model was validated through experimental data. The results show that the mass in the filter wall increases steeply and then decreases slowly. Soot distribution in the cake layer has a minimum thickness for appropriately 30% of the total channel length. While, the edges at the inlet and outlet have the maximum thickness. The exhaust parameters, including temperature, flow rate, the concentration of O2 and the concentration of NO2, mainly influence the thickness of soot distribution by influencing performance of the NO2 assisted regeneration. The temperature has the largest influence, and the thickness of soot distribution in the cake layer is more sensitive to the concentration of NO2 than O2. The structure parameters, including the ratio of length to diameter, the ratio of inlet diameter to outlet diameter and channel density have significant effects on the shape of the soot distribution in the cake layer. With the increase in the structure parameters, the soot distribution tends to be uneven, and the channel density has the largest impact, which means the position of the lowest point tends to move to the rear end, while the increase in the ratio of inlet diameter to outlet diameter leads the point to move to the front end.

Key words: power machinery and engineering, catalytic diesel particulate filter(CDPF), soot distribution, exhaust parameters

中图分类号: 

  • TK421.5
[1] Resitoglu I A, Altinisik K, Keskin A.The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems[J]. Clean Technologies and Environmental Policy, 2015,17(1):15-27.
[2] 帅石金,唐韬,赵彦光,等.柴油车排放法规及后处理技术的现状与展望[J]. 汽车安全与节能学报,2012,3(3):200-217.
Shuai Shi-jin, Tang Tao, Zhao Yan-guang, et al.State of the art and outlook of diesel emission regulations and aftertreatment technologies[J]. Journal of Automotive Safety and Energy, 2012,3(3):200-217.
[3] Hesterberg T W, Long C M, Bunn W B, et al.Health effects research and regulation of diesel exhaust: an historical overview focused on lung cancer rick[J]. Inhalation Toxicology, 2012,24: 1-45.
[4] Hesterberg T W, Long C M, Sax S N, et al, Particulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE)[J]. Journal of the Air & Waste Management Association, 2011,61(9): 894-913.
[5] Guan B, Zhan R, Lin H, et al.Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines[J]. Journal of Environmental Management,2015,154:225-258.
[6] 李志军,杨士超,焦鹏昊,等. 催化型微粒捕集器主被动再生性能数值模拟[J]. 农业机械学报, 2014,45(5):37-43.
Li Zhi-jun, Yang Shi-chao, Jiao Peng-hao, et al.Computational investigation in active and passive regeneration characteristics of catalytic particulate filte[J]. Transactions of the Chinese Society for Agriculture Machinery,2014,45(5): 37-43.
[7] 马荣,何超,李加强,等. NO2对柴油机微粒捕集器再生特性的影响机理[J]. 车用发动机,2013(3):71-74.
Ma Rong, He Chao, Li Jia-qiang, et al.Influence of NO2 on DPF regeneration characteristics[J]. Vehicle Engine,2013(3): 71-74.
[8] Wu G J, Kuznetsov A V, Jasper W J.Distribution characteristics of exhaust gases and soot particles in a wall-flow ceramics filte[J]. Journal of Aerosol Science, 2011, 42(7): 447-461.
[9] Bisset E J.Mathematical model of the thermal regeneration of a wall-flow monolith diesel particulate filte[J]. Chemical Engineering Science, 1984,39:1233-1244.
[10] Konstandopoulos A, Kostoglou M. Periodically reversed flow regeneration of diesel particulate traps[C]∥SAE Paper,1999-01-0469.
[11] Haralampous O A, Koltsakis G C.Back-diffusion modeling of NO2 in catalyzed diesel particulate filters[J]. Industrial & Engineering Chemistry Research, 2004,43(4):875-883.
[12] Konstandopoulos A, Kostoglou M, Skaperdas E, et al. Fundamental studies of diesel particulate filters: transient loading, regeneration and aging[C]∥SAE Paper, 2000-01-1016.
[13] 刘洪岐,高莹,姜鸿澎,等. NO2扩散作用对催化型微粒捕集器再生的影响[J]. 农业机械学报,2016, 47(12): 354-360,366.
Liu Hong-qi, Gao Ying, Jiang Hong-peng, et al.Effects of NO2 diffusion on catalyst diesel particulate filter regeneration[J]. Transactions of the Chinese Society for Agriculture Machinery, 2016, 47(12):354-360,366.
[14] Mohammed H, Lakkireddy V, Johnson J, et al. An experimental and modeling study of a diesel oxidation catalyst and a catalyzed diesel particulate filter using a 1-D 2-Layer model[C]∥SAE Paper,2006-01-0466.
[15] Bensaid S, Marchisio D L, Fino D, et al.Modelling of diesel particulate filtration in wall-flow traps[J].Chemical Engineering Journal,2009, 154(1-3): 211-218.
[1] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[2] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[3] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
[4] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[5] 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
[6] 席雷, 徐亮, 高建民, 赵振, 王明森. 厚壁矩形带肋通道内蒸汽流动及传热特性[J]. 吉林大学学报(工学版), 2018, 48(3): 752-759.
[7] 李龙, 张幽彤, 左正兴. 变负载控制在自由活塞内燃发电机的缸压控制中的应用[J]. 吉林大学学报(工学版), 2018, 48(2): 473-479.
[8] 田径, 刘忠长, 刘金山, 董春晓, 钟铭, 杜文畅. 基于燃烧边界参数响应曲面设计的柴油机性能优化[J]. 吉林大学学报(工学版), 2018, 48(1): 159-165.
[9] 卫海桥, 裴自刚, 冯登全, 潘家营, 潘明章. 压电喷油器多次喷射对GDI汽油机颗粒物排放的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 166-173.
[10] 李志军, 何丽, 姜瑞, 申博玺, 孔祥金, 刘世宇. 柴油机微粒捕集器灰分分布对其压降的影响评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1760-1766.
[11] 郭亮, 杨文昭, 王云开, 孙万臣, 程鹏, 李国良. 废气再循环对丁醇/柴油混合燃料发动机的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1767-1774.
[12] 虞浏, 刘忠长, 刘江唯, 杜宏飞, 许允. 直喷汽油机喷雾粒径特性[J]. 吉林大学学报(工学版), 2017, 47(5): 1482-1488.
[13] 刘忠长, 腾鹏坤, 田径, 许允, 亓升林, 于凯波. 二级增压柴油机旁通阀调节特性[J]. 吉林大学学报(工学版), 2017, 47(3): 796-803.
[14] 彭玮, 李国祥, 闫伟. 适用于发动机散热器的壁面函数改进[J]. 吉林大学学报(工学版), 2017, 47(3): 804-810.
[15] 唐志刚, 张力, 尚会超, 吕晓惠, 陈曦, 郑仁蔚. 电热塞点火微型内燃机燃烧特性及残余废气对其的影响[J]. 吉林大学学报(工学版), 2017, 47(3): 811-818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[5] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[6] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[7] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[8] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[9] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[10] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .