吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (5): 1600-1607.doi: 10.13229/j.cnki.jdxbgxb20180340

• • 上一篇    

焊接能量对Cu/Al超声波焊接接头组织与性能的影响

谷晓燕1(),刘东锋1,刘婧1,孙大千1,马会峰2   

  1. 1. 吉林大学 材料科学与工程学院,长春130022
    2. 河北艺博文化发展有限公司,石家庄050062
  • 收稿日期:2018-04-13 出版日期:2019-09-01 发布日期:2019-09-11
  • 作者简介:谷晓燕(1979-),女,教授,博士.研究方向:先进材料连接.E-mail:guxiaoyan821@sina.com
  • 基金资助:
    国家自然科学基金项目(51275204)

Effect of welding energy on microstructure and mechanical properties of Cu/Al joints welded by ultrasonic welding

Xiao-yan GU1(),Dong-feng LIU1,Jing LIU1,Da-qian SUN1,Hui-feng MA2   

  1. 1. College of Materials Science and Engineering, Jilin University, Changchun 130022, China
    2. Hebei YiBo Culture Development Co. , Ltd. , Shijiazhuang 050062, China
  • Received:2018-04-13 Online:2019-09-01 Published:2019-09-11

摘要:

采用超声波焊接技术制备了Cu/Al异种金属搭接接头,运用UT-325型热电偶测温仪、光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)以及万能试验机对Cu/Al搭接接头进行了系统的研究。结果表明:随焊接能量增加Cu/Al界面处应力增大,导致界面摩擦力增大,产热量增加,原子活度和金属塑性流动能力相应增大,界面成形逐渐得到改善。此外,由于界面处应力分布不均,致使界面处金属发生塑性流动,形成漩涡状塑性变形。随焊接能量增大界面应力不均性更加显著,漩涡状塑性变形的程度增大。这种塑性变形会造成金属互锁,增大接头剪切力,接头最大剪切力达到3.72 kN。当焊接能量达到或高于1700 J时,Cu/Al界面处出现金属间化合物层,其主要组织为Al2Cu,接头断裂形式为韧-脆混合断裂。

关键词: 材料合成与加工工艺, 超声波焊接, Cu/Al异种金属, 应力分布, 漩涡状塑性变形, 金属间化合物层

Abstract:

In this paper, ultrasonic welding technology was applied for welding the Cu/Al dissimilar metals lap joints. The peak temperature, microstructure and mechanical properties of the joints were analyzed by UT-325 thermocouple thermometer, Optical Microscope (OM), Scanning Electron Microscopy (SEM) and universal testing machine. Results show that the stress at the Cu/Al interface increases constantly with the growing of welding energy, which causes the increase in interfacial friction and heat generation. Furthermore, the interface is improved gradually thanks to the increasing atomic activity and the plastic flow capacity. In addition, swirling deformation is formed at the interface due to the uneven distribution of stress. The driving force at the interface increases with the growing of welding energy that can cause a more obvious uneven distribution of the stress and a more dramatic swirling deformation. This kind of deformation will cause the mechanical interlock between Cu/Al dissimilar metals which can increase the shear force of the joint. The maximum shear force of the joint reaches 3.72 KN. Moreover, intermetallic layer with the dominant phase of Al2Cu is found in joints with the welding energy of 1700 J or even higher. Fracture mode of joints is the mixed-mode of ductile and brittle fractures.

Key words: material synthesis and processing technology, ultrasonic welding, Cu/Al dissimilar metals, stress distribution, swirling deformation, intermetallic layer

中图分类号: 

  • TG453.9

表1

6082-T6 铝合金和T2紫铜的热物理性能参数"

母材热导率/(m·℃)热膨胀系数/(10-6·K-1)比热容/[J·(kg·K)-1]弹性模量/GPa
6082-T6铝合金19323.596071.7
T2紫铜39916.9611119

图1

超声波金属焊机及压齿形貌及尺寸"

图2

工件装配"

图3

不同焊接能量接头界面处的热循环曲线"

图4

不同焊接能量下接头的形貌"

图5

不同焊接能量下界面处的应力分布"

图6

不同焊接能量下接头界面的微观组织"

表2

图6所示EDS点扫描分析结果"

位置AlCu
点175.4724.53Al2Cu
点268.9331.07Al2Cu

图7

不同焊接能量下接头的剪切力"

图8

接头剪切断口形貌"

图9

不同焊接能量时断口X射线衍射分析"

1 田尤, 杨为民, 申俊峰, 等. 中国铜资源产业形势分析及发展对策建议[J]. 资源与产业, 2015, 17(4): 100-105.
TianYou, YangWei-min, ShenJun-feng, et al. Analysis and recommendations of Chinese copper resources industry situation[J]. Resour & Industries, 2015, 17(4): 100-105.
2 FeiXin-jiang, YeYing, JinLiang-liang, et al. Special welding parameters study on Cu/Al joint in laser-heated friction stir welding[J]. Journal of Materials Processing Technology, 2018, 256: 160-171.
3 HailatM M, MianA, ChaudhuryZ A, et al. Laser micro-welding of aluminum and copper with and without tin foil alloy[J]. Microsystem Technologies, 2012, 18(1): 103-112.
4 MatsuokaS, ImaiH. Direct welding of different metals used ultrasonic vibration[J]. Journal of Materials Processing Technology, 2009, 209(2): 954-960.
5 夏春智, 李亚江, 王娟. Cu/Al异种金属连接的研究现状[J]. 焊接, 2008(1): 17-20.
XiaChun-zhi, LiYa-jiang, WangJuan. Research status of joining of Cu/Al dissimilar metals[J]. Welding & Joining, 2008(1): 17-20.
6 KoyamaK, ShinozakiK, IkedaK, et al. Evaluation of brazing properties using Al-Si-Mg-Bi brazing alloy—Development of brazing technique for Al-Cu dissimilar joint (Part 1)[J]. Journal of Light Metal Welding & Construction, 2002, 40(9): 13-20.
7 MysI, SchmidtM. Laser micro welding of copper and aluminum[J]. Proceedings of SPIE—The International Society for Optical Engineering, 2006, 6107: 28-33.
8 LiH, CaoB, YangJ W, et al. Modeling of resistance heat assisted ultrasonic welding of Cu-Al joint[J]. Journal of Materials Processing Technology, 2018, 256: 121-130.
9 左迪. 铜-铝异种金属激光焊接研究[D]. 天津: 天津大学材料科学与工程学院, 2014.
ZuoDi. Research on dissimilar material laser welding between Cu and Al[D]. Tianjing: School of Materials Science and Engineering, Tianjin University, 2014.
10 ChenQ, LinS, YangC, et al. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum[J]. Ultrasonics Sonochemistry, 2017, 39: 403-413.
11 SatoY S, UrataM, KokawaH. Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063[J]. Metallurgical & Materials Transactions A, 2002, 33(3): 625-635.
12 UeokaT, TsujinoJ. Welding characteristics of aluminum and copper plate specimens welded by a 19 kHz complex vibration ultrasonic seam welding system[J]. Japanese Journal of Applied Physics, 2002, 41(1): 32-37.
13 MatsuokaS, ImaiH. Direct welding of different metals used ultrasonic vibration[J]. Journal of Materials Processing Technology, 2009, 209(2): 954-960.
14 FloodG. Ultrasonic energy welds copper to aluminum[J]. Welding Journal, 1997, 76(1): 43-45.
15 PretoriusR, VredenbergA M, SarisF W, et al. Prediction of phase formation sequence and phase stability in binary metal-aluminium thin-film systems using the effective heat of formation[J]. Journal of Applied Physics, 1991, 70(7): 3636-3646.
16 BraunovicM, AleksandrovN. Effect of electrical current on the morphology and kinetics of formation of intermetallic phases in bimetallic aluminum-copper joints[C]∥IEEE Holm Conference on Electrical Contacts, Pittsburgh, PA, 1993: 261-268.
[1] 依卓,付文智,李明哲. 双层剖分式超高压模具数值模拟及实验[J]. 吉林大学学报(工学版), 2019, 49(5): 1593-1599.
[2] 李欣,王丹,陈军绪,孙延朋,谷诤巍,徐虹. 手刹固定板冲压成形数值模拟[J]. 吉林大学学报(工学版), 2019, 49(4): 1258-1265.
[3] 刘文权,盈亮,荣海,胡平. 基于损伤修正M⁃K模型的高强度钢成形极限预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1266-1271.
[4] 张学广,贾明萌,刘纯国,何广忠. 基于增量控制的型材拉弯轨迹设计及有限元仿真[J]. 吉林大学学报(工学版), 2019, 49(4): 1272-1279.
[5] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[6] 戴岩, 聂少锋, 周天华. 带环梁的方钢管约束钢骨混凝土柱-钢梁节点滞回性能有限元分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1426-1435.
[7] 胡志清, 颜庭旭, 李洪杰, 吕振华, 廖伟, 刘庚. 深冷处理对铝合金薄板冲剪成形性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1524-1530.
[8] 邱小明, 王银雪, 姚汉伟, 房雪晴, 邢飞. 基于灰色关联的DP1180/DP590异质点焊接头工艺参数优化[J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[9] 陈俊甫, 管志平, 杨昌海, 牛晓玲, 姜振涛, 宋玉泉. 金属棒试样拉伸和扭转试验应变范围和力学特性对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
[10] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[11] 刘子武, 李剑峰. 叶片材料FV520B再制造熔覆层冲蚀损伤行为及评价[J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[12] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[13] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[14] 王辉, 周杰, 熊煜, 陶亚平, 向荣. 基于逆向工程的复杂曲面冲压件回弹补偿[J]. 吉林大学学报(工学版), 2017, 47(6): 1842-1847.
[15] 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!