1 | 郭海锋, 方良君, 俞立 . 基于模糊卡尔曼滤波的短时交通流量预测方法[J]. 浙江工业大学学报, 2013, 41(2): 218-221. |
1 | Guo Hai-feng , Fang Liang-jun , Yu Li . A short-term traffic flow prediction model based on fuzzy Kalman filtering[J]. Journal of Zhejiang University of Technology, 2013, 41(2): 218-221. |
2 | 钱伟, 杨慧慧, 孙玉娟 . 相空间重构的卡尔曼滤波交通流预测研究[J]. 计算机工程与应用, 2016, 52(14): 37-41. |
2 | Qian Wei , Yang Hui-hui , Sun Yu-juan . Kalman filtering traffic flow prediction research based on phase space reconstruction[J]. Computer Engineering and Application, 2016, 52(14): 37-41. |
3 | Guo J H , Huang W , Williams B M . Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification[J]. Transportation Research Part C, 2014, 43(1): 50-64. |
4 | 林鑫, 王晓晔, 王卓, 等 . 基于蚁群聚类算法的RBF神经网络交通流预测[J]. 河北工业大学学报, 2010, 39(3): 42-45. |
4 | Lin Xin , Wang Xiao-ye , Wang Zhuo , et al . Traffic flow forecasting based on ant colony clustering algorithm and RBF neural network[J]. Journal of Hebei University of Technology, 2010, 39(3): 42-45. |
5 | 李松, 刘力军, 翟曼 . 改进粒子群算法优化BP神经网络的短时交通流预测[J]. 系统工程理论与实践, 2012, 32(9): 2045-2049. |
5 | Li Song , Liu Li-jun , Zhai Man . Prediction for short-term traffic flow based on modified PSO optimized BP neural network[J]. Systems Engineering-Theory & Practice, 2012, 32(9): 2045-2049. |
6 | Wu Y K , Tan H C , Qin L Q , et al . Hybrid deep learning based on traffic flow prediction method and its understanding[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 166-180. |
7 | Polson N G , Sokolov V . Deep learning for short-term traffic flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2017, 79: 1-17. |
8 | 成云, 成效刚, 谈苗苗, 等 . 基于ARIMA和小波神经网络组合模型的交通流预测[J]. 计算机技术与发展, 2017, 27(1): 169-172. |
8 | Cheng Yun , Cheng Xiao-gang , Tan Miao-miao , et al . Traffic low prediction based on hybrid model of ARIMA and WNN[J]. Computer Technology and Development, 2017, 27(1): 169-172. |
9 | 商强,杨兆升,张伟,等 . 基于奇异谱分析和CKF-LSSVM的短时交通流量预测[J]. 吉林大学学报:工学版, 2016, 46(6): 1792-1798. |
9 | Shang Qiang , Yang Zhao-sheng , Zhang Wei , et al . Short-term traffic flow prediction based on singular spectrum analysis and CKF-LSSVM[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(6): 1792-1798. |
10 | 徐鹏, 姜凤茹 . 基于蚁群优化支持向量机的短时交通流预测[J]. 计算机应用与软件, 2013, 30(3): 250-254. |
10 | Xu Peng , Jiang Feng-ru . Short-term traffic flow prediction based on SVM optimized by ACO[J]. Computer Application and Software, 2013, 30(3): 250-254. |
11 | 张婉琳 . 遗传算法优化支持向量机的交通流量预测[J].激光杂志, 2014, 35(12): 116-119. |
11 | Zhang Wan-lin . Traffic flow prediction based on support vector machine optimized by genetic algorithm[J]. Laser Journal, 2014, 35(12): 116-119. |
12 | 刘钊, 杜威, 闫冬梅, 等 . 基于K邻近算法和支持向量机回归组合的短时交通利用预测[J]. 公路交通科技,2017, 34(5): 122-128,158. |
12 | Liu Zhao , Du Wei , Yan Dong-mei , et al . Short-term traffic flow forecast based on combination of K nearest neighbor algorithm and support vector regression[J]. Journal of Highway and Transportation Research and Development, 2017, 34(5):122-128,158. |
13 | 张建, 李艳军, 曹愈远, 等 . 免疫支持向量机用于航空发动机磨损故障诊断[J]. 北京航空航天大学学报, 2017, 43(7): 1419-1425. |
13 | Zhang Jian , Li Yan-jun , Cao Yu-yuan , et al . Immune SVM used in wear fault diagnosis of aircraft engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1419-1425. |
14 | 刘大有, 谷方明, 王生生 . 基于人工免疫核聚类的支持向量的数据描述方法[J]. 吉林大学学报:工学版, 2011, 41(5): 1369-1373. |
14 | Liu Da-you , Gu Fang-ming , Wang Sheng-sheng . Support vector data description based on artificial immune kernel clustering[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(5): 1369-1373. |
15 | 胡风新, 郭红瑾, 孙运芳 . 免疫算法理论及应用研究[J]. 计算机与数字工程, 2009, 37(7): 46-49. |
15 | Hu Feng-xin , Guo Hong-jin , Sun Yun-fang . Research on immune algorithm theory and its application[J]. Computer & Digital Engineering, 2009, 37(7): 46-49. |
16 | 赵亚萍, 张和生, 周卓楠, 等 . 基于最小二乘支持向量机的交通流量预测模型[J]. 北京交通大学学报, 2011, 35(2): 114-117, 136. |
16 | Zhao Ya-ping , Zhang He-sheng , Zhou Zhuo-nan , et al . Model of traffic volume forecasting based on least squares support vector machine[J]. Journal of Beijing Jiaotong University, 2011, 35(2): 114-117, 136. |
17 | 张静, 刘向东 . 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报:工学版, 2016, 46(4): 1097-1102. |
17 | Zhang jing , Liu Xiang-dong . Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(4): 1097-1102. |
18 | 郭新辰 . 最小二乘支持向量机算法及应用[D]. 长春:吉林大学计算机科学与技术学院, 2008. |
18 | Guo Xin-chen . Study on least square support vector machine algorithms and theirs application[D]. Changchun: College of Computer Science and Technology, Jilin University, 2008. |