吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (5): 1459-1464.doi: 10.13229/j.cnki.jdxbgxb20180752

• • 上一篇    

信号交叉口进口车道饱和流率估计方法

别一鸣1,2(),汤茹茹2,王运豪3,文斌4,冯天军5(),王琳虹1   

  1. 1. 吉林大学 交通学院,长春 130022
    2. 哈尔滨工业大学 交通科学与工程学院,哈尔滨 150090
    3. 东北师范大学 经济学院,长春 130117
    4. 东北师范大学 信息科学与技术学院,长春 130117
    5. 吉林建筑大学 交通科学与工程学院,长春 130118
  • 收稿日期:2018-07-20 出版日期:2019-09-01 发布日期:2019-09-11
  • 通讯作者: 冯天军 E-mail:yimingbie@126.com;68202791@qq.com
  • 作者简介:别一鸣(1986-),男,副教授,博士.研究方向:交通管理与控制.E-mail:yimingbie@126.com
  • 基金资助:
    国家自然科学基金项目(71771062);吉林省科技发展计划项目(20180520180JH);吉林省教育厅“十三五”科学技术研究项目(JJKH20180609KJ)

Saturation flow rate estimation method of approaching lanes at signalized intersections

Yi-ming BIE1,2(),Ru-ru TANG2,Yun-hao WANG3,Bin WEN4,Tian-jun FENG5(),Lin-hong WANG1   

  1. 1. College of Transportation, Jilin University, Changchun 130022, China
    2. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
    3. School of Economics, Northeast Normal University, Changchun 130117, China
    4. School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
    5. School of Transportation Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
  • Received:2018-07-20 Online:2019-09-01 Published:2019-09-11
  • Contact: Tian-jun FENG E-mail:yimingbie@126.com;68202791@qq.com

摘要:

为准确估计信号交叉口进口车道的饱和流率,将高峰期获取的车头时距采用时间序列表达;基于PP检验构建稳态检验算法,剔除绿灯显示期间进口车道的异常车头时距,以获取饱和车头时距,采用饱和车头时距的均值估计饱和流率。以长春市某典型信号交叉口3条直行车道为例对本文方法进行验证,并与HCM方法进行对比。结果表明:本文方法能准确识别出饱和车头时距;饱和流率的估计值为1700~1900 pcu/h,高于HCM方法所得到的饱和流率估计值。

关键词: 交通运输系统工程, 饱和流率, 车头时距, 稳态检验, 估计方法

Abstract:

To accurately estimate the saturation flow rates of approaching lanes at signalized intersections, the headways obtained in peak hours are expressed by time series. The steady state test method is proposed based on PP test. The abnormal headways of the approaching lane during green time are deleted to obtain the saturation headways. The saturation flow rate is estimated using the average value of saturation headways. The three through lanes of a typical signalized intersection in Changchun city are taken as examples to validate the proposed method, and the method is compared with classical Highway Capacity Manual (HCM) method. The results show that the proposed method in this paper can estimate the saturation headways accurately; the estimated saturation flow rate ranges from 1700 pcu/h to 1900 pcu/h, which are higher than that of HCM method.

Key words: traffic and transportation systems engineering, saturation flow rate, time headway, steady state test, estimation method

中图分类号: 

  • U491

图1

信号交叉口车头时距散点图"

表1

统计量Zρ的临界值"

kT
2550100250500
0.010-3.75-3.58-3.51-3.46-3.44-3.43
0.025-3.33-3.22-3.17-3.14-3.13-3.12
0.050-3.00-2.93-2.89-2.88-2.87-2.86
0.100-2.63-2.60-2.58-2.57-2.57-2.57
0.900-0.37-0.40-0.42-0.42-0.43-0.44
0.9500.00-0.03-0.05-0.06-0.07-0.07
0.9750.340.290.260.240.240.23
0.9900.720.660.630.620.610.60

表2

统计量Zα的临界值"

kT
2550100150200
0.005-3.72-3.58-3.47-3.44-3.42-3.37
0.025-2.98-2.91-2.86-2.85-2.82-2.83
0.050-2.64-2.58-2.55-2.54-2.53-2.53
0.9502.512.532.552.582.552.54
0.9752.862.892.892.902.882.88
0.9953.573.593.503.573.573.57

图2

交叉口渠化图"

表3

3条车道4天的车头时距样本数量"

星期车道6车道9车道12
304206250
290192248
282190231
284182223

表4

稳态检验前、后的车头时距样本数量"

参数车道6车道9车道12
稳态检验前304206250
稳态检验后201165169
差值1034181

图3

稳态检验方法和HCM方法计算得到的饱和车头时距"

表5

HCM方法车头时距区间百分比"

车道编号1~2 s2~3 s3~4 s>4 s
639.642.212.55.5
951.037.810.21.0
1232.045.212.410.4

表6

稳态检验方法车头时距分布百分比"

车道编号1~2 s2~3 s3~4 s>4 s
660.339.70.00.0
963.836.20.00.0
1248.551.50.00.0

表7

稳态检验和HCM方法得到的饱和流率及其差值"

参 数车道6车道9车道12
稳态检验方法188919001773
HCM方法153016881366
差值359212407

图4

车道6稳态检验方法和HCM方法计算得到的饱和流率"

1 ShanteauB. Using cumulative curves to measure saturation flow and lost time[J]. ITE Journal, 1988, 10(10): 27-31.
2 ZhouM, QuX, LiX. A recurrent neural network based microscopic car following model to predict traffic oscillation[J]. Transportation Research Part C, 2017, 84: 245-264.
3 QuX, WangS, ZhangJ. On the fundamental diagram for freeway traffic: a novel calibration approach for single-regime models[J]. Transportation Research Part B, 2015, 73: 91-102.
4 Transportation Research Board. Highway Capacity Manual[M]. Washington: National Research Council, 2010.
5 HaoH, MaW. Revisiting distribution model of departure headways at signalized intersections[J]. Transportmetrica B: Transport Dynamics, 2017, 5(1): 1-14.
6 ShaoC Q, LiuX M. Estimation of saturation flow rates at signalized intersections[J]. Discrete Dynamics in Nature and Society, 2012, 2012: 348-349.
7 ZhaoY, ZhangW B, LuJ, et al. Estimation of saturation flow rate and start-up lost time for signal timing based on headway distribution[J]. Discrete Dynamics in Nature and Society, 2015(4): 1-7.
8 王殿海, 杨少辉, 景春光. 累计曲线法计算饱和流率和相位损失时间[J]. 交通运输工程学报, 2003, 3(3): 75-78.
WangDian-hai, YangShao-hui, JingChun-guang. Cumulative curve method for calculating saturation flow rate and phase lost time[J]. Journal of Traffic and Transportation Engineering, 2003, 3(3): 75-78.
9 杨晓光, 庄斌, 李克平. 信号交叉口饱和流率和启动延误的影响分析[J]. 同济大学学报: 自然科学版, 2006, 34(6): 738-743.
YangXiao-guang, ZhuangBin, LiKe-ping. Analysis of saturation flow rate and delay at the signalized intersection[J]. Journal of Tongji University (Natural Science), 2006, 34(6): 738-743.
10 JinX X, ZhangY, WangF, et al. Departure headways at signalized intersections: a log-normal distribution model approach[J]. Transportation Research Part C: Emerging Technologies, 2009, 17(3): 318-327.
11 PhillipsP C B, PerronP. Testing for a unit root in time series regression[J]. Biometrika, 1988, 75(2): 335-346.
[1] 吴文静,陈润超,贾洪飞,罗清玉,孙迪. 车路协同环境下路段掉头区域车辆协同控制[J]. 吉林大学学报(工学版), 2019, 49(4): 1100-1106.
[2] 江亮,贺宜. 电动两轮车风险驾驶行为及事故影响因素分析[J]. 吉林大学学报(工学版), 2019, 49(4): 1107-1113.
[3] 曲昭伟,潘昭天,陈永恒,陶鹏飞,孙迪. 基于最优速度模型的改进安全距离跟驰模型[J]. 吉林大学学报(工学版), 2019, 49(4): 1092-1099.
[4] 白乔文,曲昭伟,陈永恒,熊帅,陶楚青. 非严格优先权下无左转专用相位直行车辆轨迹模型建立[J]. 吉林大学学报(工学版), 2019, 49(3): 673-679.
[5] 李志慧,钟涛,赵永华,胡永利,李海涛,赵景伟. 面向车辆自主驾驶的行人跟踪算法[J]. 吉林大学学报(工学版), 2019, 49(3): 680-687.
[6] 曹宁博,赵利英,曲昭伟,陈永恒,白乔文,邓晓磊. 考虑双向行人跟随行为的社会力模型[J]. 吉林大学学报(工学版), 2019, 49(3): 688-694.
[7] 罗小芹,王殿海,金盛. 面向混合交通的感应式交通信号控制方法[J]. 吉林大学学报(工学版), 2019, 49(3): 695-704.
[8] 陈磊,王江锋,谷远利,闫学东. 基于思维进化优化的多源交通数据融合算法[J]. 吉林大学学报(工学版), 2019, 49(3): 705-713.
[9] 凃强,程琳,林芬,孙超. 考虑出行者风险态度的最优路径搜索[J]. 吉林大学学报(工学版), 2019, 49(3): 720-726.
[10] 尹超英,邵春福,王晓全. 考虑停车可用性的建成环境对小汽车通勤出行的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 714-719.
[11] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[12] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[13] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[14] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[15] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!