吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1718-1727.doi: 10.13229/j.cnki.jdxbgxb20190581
• 交通运输工程·土木工程 • 上一篇
Hao GAO1(),Jun-jie WANG1(),Hui-jie LIU2,Jian-ming WANG3
摘要:
为实现连续梁桥地震行为可控,其抗震安全得到有效保证,本文基于连续梁桥地震行为可控的设计准则,研发了相关实用装置。设计了一种新型隔震支座,允许其在地震中发生破坏,以释放上部结构的惯性力,保护墩柱、桩基不发生损伤。设计了两种与该隔震支座配合使用的大行程钢阻尼耗能限位装置,以控制上部结构的位移在可接受的范围内。采用室内试验方法对隔震支座与耗能限位装置力学行为进行试验和检验,并得到相关本构模型参数。试验结果表明:该支座剪断可控性强,断后摩擦行为稳定,摩擦过程不确定性小,配合使用的大行程钢阻尼装置滞回曲线饱满,耗能特性突出。最后,结合连续梁桥工程案例,采用数值模拟方法对实用装置的有效性进行了验证。
中图分类号:
1 | 范立础, 李建中. 汶川桥梁震害分析与抗震设计对策[J]. 公路, 2009(5): 122-128. |
Fan Li-chu, Li Jian-zhong. Earthquake damage analysis and seismic design countermeasures of Wenchuan bridge[J]. Highway, 2009(5): 122-128. | |
2 | Ghasemi H, Cooper J D, Imbsen R A, et al. The November 1999 Duzce earthquake: post-earthquake investigation of the structures on the Tem[R]. United States: Federal Highway Administration, 2000. |
3 | Roussis P C, Constantinou M C, Erdik M, et al. Assessment of performance of seismic isolation system of Bolu Viaduct[J]. Journal of Bridge Engineering, 2003, 8(4): 182-190. |
4 | Park S W, Ghasemi H, Shen J, et al. Simulation of the seismic performance of the Bolu Viaduct subjected to near‐fault ground motions[J]. Earthquake Engineering & Structural Dynamics, 2004, 33(13): 1249-1270. |
5 | Güney D, Acar M, Özlüdemir M T, et al. Investigation of post-earthquake displacements in viaducts using Geodetic and Finite Element Methods[J]. Natural Hazards & Earth System Sciences, 2010, 10(12): 2579-2587. |
6 | Tobias D H, Hajjar J F, Anderson R E, et al. Development and refinement of Illinois’ earthquake resisting system strategy[C/OL]. [2019-10-01]. VELOPMENT_AND_REFINEMENT_OF_ILLINOIS'_EARTHQUAKE_RESISTING_SYSTEM_STRATEGY |
7 | Tobias D H, Anderson R E, Hodel C E, et al. Overview of earthquake resisting system design and retrofit strategy for bridges in Illinois[J]. Practice Periodical on Structural Design and Construction, 2008, 13(3): 147-158. |
8 | California Department of Transportation(Sacramento). Caltrans Seismic Design Criteria[EB/OL].[2015-02-18] 5035.html |
9 | Li J, Xiang N, Tang H, et al. Shake-table tests and numerical simulation of an innovative isolation system for highway bridges[J]. Soil Dynamics and Earthquake Eengineering, 2016, 86: 55-70. |
10 | 李建中, 汤虎. 中小跨径板式橡胶支座梁桥横向抗震设计研究[J]. 土木工程学报, 2016, 49(11): 69-78. |
Li Jian-zhong, Tang Hu. Study on transverse seismic design of small and medium span bridges with elastomeric bearing pads[J]. China Civil Engineering Journal, 2016, 49(11): 69-78. | |
11 | Xiang N, Alam M S, Li J. Shake table studies of a highway bridge model by allowing the sliding of laminated-rubber bearings with and without restraining devices[J]. Engineering Structures, 2018, 171: 583-601. |
12 | Xiang N, Li J. Experimental and numerical study on seismic sliding mechanism of laminated-rubber bearings[J]. Engineering Structures, 2017, 141: 159-174. |
13 | Xiang N L, Li J Z. Seismic performance of highway bridges with different transverse unseating-prevention devices[J]. Journal of Bridge Engineering, 2016, 21(9): 1-10. |
14 | Steelman J S, Filipov E T, Fahnestock L A, et al. Experimental behavior of steel fixed bearings and implications for seismic bridge response[J/OL]. [2014-08-25]. |
15 | Filipov E T, Revell J R, Fahnestock L A, et al. Seismic performance of highway bridges with fusing bearing components for quasi-isolation[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(9): 1375-1394. |
16 | Filipov E T, Fahnestock L A, Steelman J S, et al. Evaluation of quasi-isolated seismic bridge behavior using nonlinear bearing models[J]. Engineering Structures, 2013, 49: 168-181. |
17 | Peng T, Guo N. An equivalent linear model for shear pin fractures and its experimental verification[J]. Journal of Vibroengineering, 2016, 18(8): 5281-5290. |
18 | Peng T, Guo N. Experimental and numerical studies of shear pin fractures based on linear and bilinear models[J]. Mechanics, 2016, 22(4): 245-250. |
19 | Chiarotto D, Tomaselli F, Baldo P, et al. Seismic protection of Tuy Medio railway viaducts: design and shaking table tests of the seismic devices[C]∥Proceedings 13th World Conference on Earthquake Engineering (WCEE), Canada, 2004. |
20 | Shen X, Wang X, Ye A, et al. Seismic performance of transverse steel damper seismic system for long span bridges[J]. Engineering Structures, 2017, 141: 14-28. |
21 | Zhou L, Wang X, Ye A. Shake table test on transverse steel damper seismic system for long span cable-stayed bridges[J]. Engineering Structures, 2019, 179: 106-119. |
22 | 庄军生. 桥梁支座[M]. 3版. 北京: 中国铁道出版社, 2008. |
23 | 李锐, 张路阳, 刘琳, 等. 基于相似理论的三跨桥梁磁流变隔振[J]. 吉林大学学报: 工学版, 2018, 48(3): 787-795. |
Li Rui, Zhang Lu-yang, Liu Lin, et al. Magneto-rheological vibration isolation for three-span bridge based on similarity theory[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(3): 787-795. | |
24 | 贾毅, 赵人达, 王永宝, 等. 多跨长联连续梁桥粘滞阻尼器参数敏感性分析[J]. 吉林大学学报: 工学版, 2019, 49(6): 1871-1883. |
Jia Yi, Zhao Ren-da, Wang Yong-bao, et al. Sensitivity analysis of viscous damper parameters for multi-span and long-unit continuious girder bridges[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1871-1883. | |
25 | 王君杰, 王志强, 章小檀, 等. 可滑移柱形软钢阻尼装置及其在桥梁上的应用[P]. 中国:CN200810204146.2, 2010-06-23. |
26 | Tyler R G. Tapered steel energy dissipators for earthquake resistant structures[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1978, 11(4): 282-294. |
27 | 庄军生. 桥梁减震、隔震支座和装置[M]. 北京: 中国铁道出版社, 2012. |
28 | Wang H, Zhou R, Zong Z H, et al. Study on seismic response control of a single-tower self-anchored suspension bridge with elastic-plastic steel damper[J]. Science China Technological Sciences, 2012, 55(6): 1496-1502. |
29 | 宫亚峰, 王博, 谭国金, 等. 吉林省两种典型装配式箱涵受力特性对比分析[J]. 吉林大学学报: 工学版, 2019, 49(6): 1865-1870. |
Gong Ya-feng, Wang Bo, Tan Guo-jin, et al. Comparative analysis of mechanical characteristics of two typical fabricated culverts in Jilin[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1865-1870. | |
30 | JT/T843—2012. 公路桥梁弹塑性钢减震支座[S]. |
[1] | 陈华,陈耀嘉,谢斌,王鹏凯,邓朗妮. CFRP筋粘结式锚固体系界面失效演化机制及粘结强度计算[J]. 吉林大学学报(工学版), 2020, 50(5): 1698-1708. |
[2] | 张云龙,郭阳阳,王静,梁东. 钢-混凝土组合梁的固有频率及其振型[J]. 吉林大学学报(工学版), 2020, 50(2): 581-588. |
[3] | 蒲黔辉,刘静文,赵刚云,严猛,李晓斌. 高性能树脂混凝土加固混凝土偏压柱承载力理论分析[J]. 吉林大学学报(工学版), 2020, 50(2): 606-612. |
[4] | 张淼,钱永久,张方,朱守芹. 基于增大截面法的混凝土加固石拱桥空间受力性能试验分析[J]. 吉林大学学报(工学版), 2020, 50(1): 210-215. |
[5] | 王伯昕,杨海涛,王清,高欣,陈小旭. 基于补充改进集合经验模态分析法⁃多尺度排列熵分析桥梁振动信号优化滤波方法[J]. 吉林大学学报(工学版), 2020, 50(1): 216-226. |
[6] | 钟春玲,梁东,张云龙,王静. 体外预应力加固简支梁自振频率计算[J]. 吉林大学学报(工学版), 2019, 49(6): 1884-1890. |
[7] | 贾毅,赵人达,王永宝,李福海. 多跨长联连续梁桥粘滞阻尼器参数敏感性分析[J]. 吉林大学学报(工学版), 2019, 49(6): 1871-1883. |
[8] | 白伦华,沈锐利,张兴标,王路. 自锚式悬索桥的面内稳定性[J]. 吉林大学学报(工学版), 2019, 49(5): 1500-1508. |
[9] | 赵金钢,张明,占玉林,谢明志. 基于塑性应变能密度的钢筋混凝土墩柱损伤准则[J]. 吉林大学学报(工学版), 2019, 49(4): 1124-1133. |
[10] | 万世成,黄侨,关健,郭赵元. 预应力碳纤维板加固钢⁃混凝土组合连续梁负弯矩区试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1114-1123. |
[11] | 李万恒,申林,王少鹏,赵尚传. 基于多阶段分区域动力测试的桥梁结构损伤评估[J]. 吉林大学学报(工学版), 2019, 49(3): 773-780. |
[12] | 惠迎新,毛明杰,刘海峰,张尚荣. 跨断层桥梁结构地震响应影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1725-1734. |
[13] | 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472. |
[14] | 宫亚峰, 何钰龙, 谭国金, 申杨凡. 三跨独柱连续曲线梁桥抗倾覆稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(1): 133-140. |
[15] | 魏志刚, 刘寒冰, 时成林, 宫亚峰. 考虑桥面铺装作用的简支梁桥横向分布系数计算[J]. 吉林大学学报(工学版), 2018, 48(1): 105-112. |
|