吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 2128-2136.doi: 10.13229/j.cnki.jdxbgxb20200648

• 交通运输工程·土木工程 • 上一篇    

重载铁路改良土和A组填料过渡段的动力特性

商拥辉1,2(),徐林荣1,3(),刘维正1,蔡雨1   

  1. 1.中南大学 土木工程学院,长沙 410075
    2.黄淮学院 建筑工程学院,河南 驻马店 463000
    3.中南大学 高速铁路建造技术国家工程实验室,长沙 410075
  • 收稿日期:2020-08-24 出版日期:2021-11-01 发布日期:2021-11-15
  • 通讯作者: 徐林荣 E-mail:syhsrsci@sina.com;Irxu@csu.edu.com
  • 作者简介:商拥辉(1985-),男,讲师,博士. 研究方向:特殊土路基动力特性. E-mail:syhsrsci@sina.com
  • 基金资助:
    国家自然科学基金项目(51778634);中国博士后科学基金项目(2020M682589);河南省科技攻关重点研发项目(202102310264);河南省教育厅重点研发项目(20B58003)

Dynamic features of transition section between improved soil and A⁃filled of heavy⁃haul railway

Yong-hui SHANG1,2(),Lin-rong XU1,3(),Wei-zheng LIU1,Yu CAI1   

  1. 1.School of Civil Engineering,Central South University,Changsha 410075,China
    2.Institute of Architecture and Engineering,Huanghuai University,Zhumadian 463000,China
    3.National Engineering Laboratory for High Speed Railway Construction,Central South University,Changsha 410075,China
  • Received:2020-08-24 Online:2021-11-01 Published:2021-11-15
  • Contact: Lin-rong XU E-mail:syhsrsci@sina.com;Irxu@csu.edu.com

摘要:

为分析不同类别填料相邻填筑特殊过渡段的动力特性,依托浩吉(浩勒报吉-吉安)重载铁路工程,采用现场激振试验与数值模拟相结合的方法,揭示了改良膨胀土和A组填料过渡段横、纵向路基的动力特性差异。结果表明:同荷载条件下,A组填料路基横断面动力响应大于改良膨胀土,具体表现为:动应力的增幅达到5%~8%,加速度的增幅达到40%~50%;当速度为120 km/h,轴重为25~30 t的重载列车运行时,过渡段交接处纵向路面动力响应存在0.8%~13%的加剧现象,且一定程度上受行车方向影响。本文研究成果可为重载铁路填料过渡段的精细化建设养修提供理论依据。

关键词: 道路与铁道工程, 填料过渡段, 动力特性, 激振试验, 数值模拟

Abstract:

In order to analyze the dynamic features of the special transition section of different types of filling adjacent to fill, considering the background of Haoji (Haole Baoji-Jian) heavy-haul railway engineering, the method, combining the field excitation test and numerical simulation, was used to reveal the difference of dynamic features between transverse and longitudinal of the transition section subgrade between improved soil and group A filler. The results show that under the same load condition, the dynamic response of the cross section of the A-filled subgrade is greater than that of the modified expansive soil, which is specifically manifested by the increase of dynamic stress by 5~8% and acceleration by 40~50%. When the trains with a speed of 120 km/h and an axle load of 25~30 t, the dynamic response of the longitudinal road surface at the junction of the transition section increases by 0.8~13%, and to certain extent it is affected by the direction of the vehicle. The research results can provide a theoretical basis for the fine construction and maintenance of the filling transition section of heavy-haul railway.

Key words: highway & railway engineering, filling transition section, dynamic features, excitation test, numerical simulation

中图分类号: 

  • U231.1

表1

膨胀土改良前、后工程性质对比"

指标

类别

指标参数

天然

土样

水泥掺量
3%4%5%

自由膨胀率66322823
有荷膨胀率(25 kPa)6.80.10.06<0
有荷膨胀率(50 kPa)6.7<0<0<0
膨胀力/kPa12914101
收缩系数0.910.730.620.52
缩限/%10.210.211.911.2

黏聚力/kPa45183201291
内摩擦角Φ21.424.633.235.5

7 d饱和无侧限

抗压强度/kPa

4486610181170

水稳

系数

压实度0.900.180.810.840.83
压实度0.950.250.850.880.89

表2

膨胀性指标对比"

相关指标天然土样掺量3%掺量4%掺量5%
石灰水泥石灰水泥石灰水泥
自由膨胀率66273024272123
有荷膨胀率(25 kPa)6.8<00.1<00.06<0<0
有荷膨胀率(50 kPa)6.7<0<0<0<0<0<0
膨胀力/kPa129121451011

表3

强度指标对比"

相关指标天然土样掺量3%掺量4%掺量5%
石灰水泥石灰水泥石灰水泥

饱和无侧限

强度/kPa

37308335477512786852
黏聚力C42124139189204231244
内摩擦角Φ20.624.627.630.231.837.541.8

表4

临界动应力指标对比"

填料类别围压/kPa临界动应力/kPa
范围区间平均值
3%水泥改良土15151.2~185.7168.45
30157.5~203.5180.50
60182.3~233.1207.70
5%水泥改良土15142.5~208.1175.30
30148.3~233.5190.90
60202.5~249.7226.10
A组粗粒填料2015100~125112.5
30100~125112.5
60125~150137.5

图1

填料过渡段纵向图"

图2

测试元件横断面布置图"

图3

元件埋设及测试"

图4

加速度沿路基深度变化曲线"

图5

动应力沿路基深度变化曲线"

表5

路基动静应力统计表(DK948+270)"

深度/m静应力/kPa轴重为30 t、速度为120 km/h
动应力/kPa动静应力比
017.7116.296.57
0.630.072.232.41
0.935.448.561.38
2.564.228.030.44
3.582.217.520.21
4.5100.212.890.13

图6

列车-有砟轨道-基床-地基力学简化模型"

图7

列车-有砟轨道-基床-地基数值模型"

表6

数值计算所需参数"

类别重度/(kN·m-3

弹性模量/

MPa

泊松比黏聚力/kPa摩擦角/(°)
C8078.27210 0000.31--
钢轨78.5210 0000.31--
轨枕2721 0000.17--
道床21.33000.30--
A组填料19.52400.25--
5%改良土18.22100.2824441.8
3%改良土18.12000.2813927.6
地基土17.6380.324220.6

图8

路基面动应力变化曲线"

图9

不同方法获取动应力沿路基深度变化曲线"

图10

路基纵向动应力与加速度变化曲线"

1 肖世伟, 雷长顺. 重载铁路路基荷载特征和路基动力响应分析[J]. 铁道工程学报, 2014, 31(4): 51-56.
Xiao Shi-wei, Lei Chang-shun. Loading characteristics and dynamic response analysis of subgrade for heavy-haul railway[J]. Journal of Railway Engineering Society, 2014, 31(4):51-56.
2 冷伍明, 梅慧浩, 聂如松, 等.重载铁路路基足尺模型试验研究[J]. 振动与冲击, 2018, 37(4):1-6, 18.
Leng Wu-ming, Mei Hui-hao, Nie Ru-song, et al. Full-scale model test of heavy-haul railway subgrade[J]. Journal of Vibration and Shock, 2018, 37(4):1-6, 18.
3 李鹏. 重载铁路路基动力响应与长期累积变形特性[D].哈尔滨: 哈尔滨工业大学土木工程学院, 2018.
Li Peng. Dynamic response and long-term cumulative deformation characteristics of heavy haul railway subgrade[D]. Harbin: School of Civil Engineering, Harbin Institute of Technology, 2018.
4 商拥辉, 徐林荣, 蔡雨, 等.重载铁路循环动载下水泥改良膨胀土路基动力特性[J]. 中国铁道科学, 2019, 40(6):19-29.
Shang Yong-hui, Xu Lin-rong, Cai Yu, et al. Dynamic deformation of cement-stabilized expansive soil subgrade under cyclic dynamic load of heavy haul railway[J]. China Railway Science, 2019, 40(6):19-29.
5 Fryba L. History of winkler foundation[J]. Vehicle System Dynamics,2007, 24:7-12.
6 Kenney J T. Steady-state vibration of beam on elastic foundation for moving load[J]. Journal of Applied Mechanics, 1954, 21(4):359-364.
7 Matsuura A. Simulation for analyzing direct derailment limit of running vehicle on oscillating tracks[J]. Doboku Gakkai Ronbunshu, 1998,1998(591):19-28.
8 翟婉明, 赵春发, 夏禾, 等.高速铁路基础结构动态性能演变及服役安全的基础科学问题[J]. 中国科学:技术科学, 2014, 44(7):645-660.
Zhai Wan-ming, Zhao Chun-fa, Xia He, et al. Basic scientific issues on dynamic performance evolution of the high-speed railway infrastructure and its service safety[J]. Science China: Technical, 2014, 44(7):645-660.
9 陈云敏, 边学成.高速铁路路基动力学研究进展[J]. 土木工程学报, 2018, 51(6):1-13.
Chen Yun-min, Bian Xue-cheng. The review of high-speed railway track foundation dynamics[J]. China Civil Engineering Journal, 2018, 51(6):1-13.
10 Qiu Ming-ming, Yang Guo-lin, Shen Quan, et al. Dynamic behavior of new cutting subgrade structure of expensive soil under train loads coupling with service environment[J]. Journal of Central South University, 2017, 24(4):875-890.
11 吕文强, 罗强, 刘钢, 等.重载铁路路基基床结构分析及设计方法[J]. 铁道学报, 2016, 38(4):74-81.
Lv Wen-qiang, Luo Qiang, Liu Gang, et al. Structural analysis and design method for subgrade bed of heavy-haul railway[J]. Journal of China Railway Society, 2016, 38(4):74-81.
12 韩博文, 冯怀平, 应志超, 等.振动荷载作用下浸水过程对重载铁路基床变形特性影响研究[J]. 振动与冲击, 2019, 38(1):221-228.
Han Bo-wen, Feng Huai-ping, Ying Zhi-chao, et al. Study on influence of soaking process on deformation characteristics of heavy-haul railway subgrade under vibration load[J]. Journal of Vibration and Shock, 2019, 38(1):221-228.
13 刘晓红, 杨果林, 方薇. 高铁无碴轨道路堑基床换填厚度与动力稳定[J]. 岩石力学与工程学报, 2011, 30():3534-3538.
Liu Xiao-hong, Yang Guo-lin, Fang Wei. Replacement thickness and dynamic stability of cutting bed under ballstless track of high-speed railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Sup.2):3534-3538.
14 董亮, 赵成刚, 蔡德钩, 等.高速铁路无砟轨道路基动力特性数值模拟和试验研究[J]. 土木工程学报, 2008,41(10):81-86.
Dong Liang, Zhao Cheng-gang, Cai De-gou, et al. Experiment validation of a numerical model for prediction of the dynamic response of ballastless of subgrade of high-speed railway[J]. China Civil Engineering Journal, 2008,41(10):81-86.
15 徐旸, 高亮, 蔡小培, 等.基于激光扫描法的铁路道砟级配对道床动力特性影响的离散元研究[J]. 振动与冲击, 2017, 36(5):127-133, 156.
Xu Yang, Gao Liang, Cai Xiao-pei, et al. Influences of ballast gradation on railway bed dynamic characteristics based on laser scanning and discrete element method[J]. Journal of Vibration and Shock, 2017, 36(5):127-133, 156.
16 . 铁路线路设计规范[S].
17 Shang Yong-hui, Xu Lin-rong, Huang Ya-li, et al. Experimental study on the dynamic features of cement-stabilized expansive soil as subgrade filling of Heavy-haul railway[J]. Journal of Engineering Science and Technology Review, 2017, 10(6):136-145.
18 周葆春,孔令伟,郭爱国. 石灰改良膨胀土的应力-应变-强度特征与本构描述[J]. 岩土力学,2012,33(4):999-1005.
Zhou Bao-chun, Kong Ling-wei, Guo Ai-guo. Stress-strain- strength behaviour and constitutive description of lime-treated expansive soil[J]. Rock and Soil Mechanics, 2012, 33(4):999-1005.
19 汪明武, 秦帅, 李健, 等.合肥石灰改良膨胀土的非饱和强度试验研究[J]. 岩石力学与工程学报, 2014, 33():4233-4238.
Wang Ming-wu, Qin Shuai, Li Jian, et al. Strength of unsaturated lime-treated expansive clay in Hefei[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup.2):4233-4238.
20 梅慧浩, 冷伍明, 聂如松, 等.粗粒土的动力行为特征及永久变形特性研究[J]. 华中科技大学学报:自然科学版, 2019, 47(9):113-119.
Mei Hui-hao, Leng Wu-ming, Nie Ru-song, et al. Study on dynamic behavior and permanent deformation characteristics of coarse-grained soil[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2019, 47(9):113-119.
[1] 于征磊,陈立新,徐泽洲,信仁龙,马龙,金敬福,张志辉,江山. 基于增材制造的仿生防护结构力学及回复特性分析[J]. 吉林大学学报(工学版), 2021, 51(4): 1540-1547.
[2] 于征磊,信仁龙,陈立新,朱奕凝,张志辉,曹青,金敬福,赵杰亮. 仿蜂窝防护结构的承载特性[J]. 吉林大学学报(工学版), 2021, 51(3): 1140-1145.
[3] 宫亚峰,逄蕴泽,王博,谭国金,毕海鹏. 基于吉林省路况的新型预制装配式箱涵结构的力学性能[J]. 吉林大学学报(工学版), 2021, 51(3): 917-924.
[4] 张姝玮,郭忠印,杨轸,柳本民. 驾驶行为多重分形特征在驾驶疲劳检测中的应用[J]. 吉林大学学报(工学版), 2021, 51(2): 557-564.
[5] 苏畅,韩颖,张英朝,苗振华. 轮辐设计特征参数对整车气动特性的影响[J]. 吉林大学学报(工学版), 2021, 51(1): 107-113.
[6] 凌建明,陈卉,钱劲松,周定. 湿度有限波动下非饱和黏土路基动态回弹模量[J]. 吉林大学学报(工学版), 2020, 50(2): 613-620.
[7] 李阳,王连俊. 高铁站场宽路基复合地基二维模型适用性分析[J]. 吉林大学学报(工学版), 2020, 50(2): 621-630.
[8] 谷诤巍,陈琳,赵立辉,徐虹,李欣,于歌. 轨道车辆窗下补强板冲压成形模拟[J]. 吉林大学学报(工学版), 2020, 50(2): 504-511.
[9] 陈鑫,王宁,沈传亮,冯晓,杨昌海. 后视镜造型对前侧窗气动噪声的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 426-436.
[10] 施卫平,赵旭,胡兴军,余天明,柳博文,段彦. 天然气开采阻水装置AICD的设计和数值模拟[J]. 吉林大学学报(工学版), 2019, 49(6): 1986-1991.
[11] 宫亚峰,王博,谭国金,张立敏,吴文丁,毕海鹏. 吉林省两种典型装配式箱涵受力特性对比分析[J]. 吉林大学学报(工学版), 2019, 49(6): 1865-1870.
[12] 依卓,付文智,李明哲. 双层剖分式超高压模具数值模拟及实验[J]. 吉林大学学报(工学版), 2019, 49(5): 1593-1599.
[13] 李欣,孙延朋,王丹,陈军绪,谷诤巍,徐虹. 汽车前地板成形有限元数值模拟[J]. 吉林大学学报(工学版), 2019, 49(5): 1608-1614.
[14] 张学广,贾明萌,刘纯国,何广忠. 基于增量控制的型材拉弯轨迹设计及有限元仿真[J]. 吉林大学学报(工学版), 2019, 49(4): 1272-1279.
[15] 李欣,王丹,陈军绪,孙延朋,谷诤巍,徐虹. 手刹固定板冲压成形数值模拟[J]. 吉林大学学报(工学版), 2019, 49(4): 1258-1265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!