吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 2182-2189.doi: 10.13229/j.cnki.jdxbgxb20210848

• 计算机科学与技术 • 上一篇    

基于文本融合的物联网触发动作编程模式服务推荐方法

孙东明(),胡亮,邢永恒,王峰()   

  1. 吉林大学 计算机科学与技术学院,长春 130012
  • 收稿日期:2021-03-30 出版日期:2021-11-01 发布日期:2021-11-15
  • 通讯作者: 王峰 E-mail:sundm16@mails.jlu.edu.cn;wangfeng12@mails.jlu.edu.cn
  • 作者简介:孙东明(1986-),男,博士研究生. 研究方向:文本挖掘. E-mail:sundm16@mails.jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFA0604500);国家自然科学基金项目(61701190);吉林省青年科学基金项目(20180520021JH);吉林省省校共建示范项目(SXGJSF2017-4);吉林省重点科技研发项目(20180201103GX);吉林省发展与改革委员会项目(2019FGWTZC001)

Text fusion based internet of things service recommendation for trigger⁃action programming pattern

Dong-ming SUN(),Liang HU,Yong-heng XING,Feng WANG()   

  1. College of Computer Science and Technology,Jilin University,Changchun 130012,China
  • Received:2021-03-30 Online:2021-11-01 Published:2021-11-15
  • Contact: Feng WANG E-mail:sundm16@mails.jlu.edu.cn;wangfeng12@mails.jlu.edu.cn

摘要:

针对一类物联网自动化驱动应用提出了一种服务推荐方法。该方法结合了文本分析、异构信息网络、深度学习技术,通过分析文本来寻找物联网中相关联的对象,进而达到推荐服务的目的。首先,构造异构信息网络,并将文本和文本关系融入其中,生成一种文本融合的异构信息网络;随后,设计元路径和关系权重;最终,训练生成神经网络模型用于对服务进行推荐。在一个真实的数据集上进行了实验评估,结果表明,本文方法可以对服务进行推荐,并明显优于一些经典方法。

关键词: 计算机应用, 物联网, 异构信息网络, 文本分析, 触发动作编程模式

Abstract:

This article proposes a service recommendation approach for a type of Internet of Things (IoT) automation-driven applications. The approach combines text analysis, heterogeneous information networks and deep learning to find related objects in the IoT by analyzing text, and then recommends the services. First, we construct a text fusion heterogeneous information network, which integrates text and text relationships. Then we design meta-paths and relationship weights. Finally, we train a neural network model for recommending the services. This paper conducts an experimental evaluation on a real data set. The results show that the proposed approach can be used for recommendation task and outperforms some classical methods.

Key words: computer application, internet of things, heterogeneous information network, text analysis, trigger-action programming pattern

中图分类号: 

  • TP391.1

图1

TAP的结构图"

图2

在IoT-HIN中加入“Word”类型节点"

图3

在IoT-HIN中加入“WR”类型边"

图4

神经网络模型结构图"

表1

服务供应商(Channel)列表"

IFTTTTwitterDate Time
RSS FeedPhone Call(US only)Weather Underground
EmailSMSDelicious
FacebookClassifiedsTumblr
VimeoFlickrStocks
PinboardPocketEvernote
DropboxInstagramFacebook Pages
WordPressFoursquareYouTube
GmailGoogle CalendarDiigo
SoundCloudBitlyOneDrive
BoxGoogle DriveWithings
LinkedIn

表2

Trigger-Channel的预测结果"

方法AccuracyPrecisionRecallF1-score
1NN0.6260.6600.6260.619
3NN0.5580.6300.5580.556
NB0.4840.5160.4840.489
DT0.6890.7170.6890.691
SVM0.3050.0930.3050.143
本文0.7940.8010.7940.787

表3

Action-Channel预测结果"

方法AccuracyPrecisionRecallF1-score
1NN0.5790.6470.5790.588
3NN0.5210.6340.5210.522
NB0.4320.4720.4320.428
DT0.7210.7360.7210.719
SVM0.1470.0220.1470.038
本文0.7820.7920.7820.779

表4

总体预测结果"

方法AccuracyPrecisionRecallF1-score
1NN0.6030.6430.6030.604
3NN0.5400.6460.5390.546
NB0.4580.4860.4580.461
DT0.7050.7190.7050.704
SVM0.2260.0640.2260.100
本文0.7880.7990.7880.783
1 丁琳,王会娟. 互联网技术进步对中国就业的影响及国别比较研究[J]. 经济科学, 2020(1): 72-85.
Ding Lin, Wang Hui-juan. The impact of internet technological change on employment in china and country comparison[J]. Economic Science, 2020(1): 72-85.
2 孙静愚. 数字地球技术及其应用研究[J]. 环球市场信息导报, 2017(8): 14-16.
Sun Jing-yu. Research on digital earth technology and its application[J]. Global Marhet Information Guide, 2017(8): 14-16.
3 郭志鹏, 李娟, 赵友刚, 等. 物联网中的无线传感器网络技术综述[J]. 计算机与应用化学, 2019, 36(1): 72-83.
Guo Zhi-peng, Li Juan, Zhao You-gang, et al. Review of wireless sensor networks technology in internet of things[J]. Computers and Applied Chemistry, 2019, 36(1): 72-83.
4 谢军, 庄建楼, 康成斌. 基于北斗系统的物联网技术与应用[J]. 南京航空航天大学学报, 2021, 53(3): 329-337.
Xie Jun, Zhuang Jian-lou, Kang Cheng-bin. Internet of things technology and application based on beidou system[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(3): 329-337.
5 Teillet P M. Sensor webs: a geostrategic technology for integrated earth sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2010, 3(4): 473-480.
6 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报: 工学版, 2018, 48(4): 1231-1236.
Fu Wen-bo, Zhang Jie, Chen Yong-le. Network topology discovery algorithm against routing spoofing attack in internet of things[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(4): 1231-1236.
7 Samie F, Bauer L, Henkel J. IoT Technologies for embedded computing: a survey[C]∥International Conference on Hardware/Software Codesign and System Synthesis, Pittsburgh, PA, USA, 2016:1-10.
8 陈红松, 陈京九. 基于统计的物联网分布式拒绝服务攻击检测[J]. 吉林大学学报: 工学版, 2020, 50(5): 1894-1904.
Chen Hong-song, Chen Jing-jiu. Statistical based distributed denial of service attack detection research in internet of things[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1894-1904.
9 Nguyen K T, Laurent M, Oualha N. Survey on secure communication protocols for the internet of things[J]. Ad Hoc Networks, 2015, 32: 17-31.
10 Wang F, Hu L, Zhou J, et al. A survey from the perspective of evolutionary process in the internet of things[J]. International Journal of Distributed Sensor Networks, 2015, 11(3): 1944-1947.
11 Teillet P M. Sensor webs: a geostrategic technology for integrated earth sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2010, 3(4): 473-480.
12 Jian Z, Shan L H, Hu H L, et al. Mobile cellular networks and wireless sensor networks: toward convergence[J]. IEEE Communications Magazine, 2012, 50(3): 164-169.
13 Neuhaus H, Compton M. The semantic sensor network ontology[C]∥AGILE workshop on challenges in geospatial data harmonisation, Hannover, Germany, 2009: 1-33.
14 Gyrard A, Patel P, Datta S K, et al. Semantic web meets internet of things and web of things[C]∥Proceedings of the 26th International Conference on World Wide Web Companion, Kobe, Japan, 2017: 917-920.
15 Ling W, Blunsom P, Grefenstette E, et al. Latent predictor networks for code generation[C]∥Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 2016:599-609.
16 Quirk C, Mooney R, Galley M. Language to Code: learning semantic parsers for if-this-then-that recipes[C]∥Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (ACL-
17 , Beijing, China, 2015: 878-888.
18 Compton M, Barnaghi P, Bermudez L, et al. The SSN ontology of the W3C semantic sensor network incubator group[J]. Journal of Web Semantics, 2012, 17: 25-32.
19 Ganzha M, Paprzycki M, Pawlowski W, et al. Semantic interoperability in the internet of things; an overview from the INTER-IoT perspective[J]. Journal of Network & Computer Applications, 2016, 81: 111-124.
20 Lin J W, Chelliah P R, Hsu M C, et al. Efficient fault-tolerant routing in iot wireless sensor networks based on bipartite-flow graph modeling[J]. IEEE Access, 2019, 7: 14022-14034.
21 Alasmary H, Khormali A, Anwar A, et al. Analyzing and detecting emerging internet of things malware: a graph-based approach[J]. IEEE Internet of Things Journal, 2019, 6(5): 8977-8988.
22 Hou Shi-fu, Ye Yan-fang, Song Yang-qiu, et al. HinDroid: an intelligent android malware detection system based on structured heterogeneous information network[C]∥The 23rd ACM SIGKDD International Conference, Halifax, Canada, 2017: 1507-1515.
23 Yao L N, Quan Z S, Ngu A, et al. Things of interest recommendation by leveraging heterogeneous relations in the internet of things[J]. Acm Transactions on Internet Technology, 2016, 16(2): 1-25.
24 ConceptNet[EB/OL]. [2021-02-20].
25 Sun Y Z, Han J W, Yan X F, et al. PathSim: meta path-based top-k similarity search in heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2011, 4(11): 992-1003.
26 Mi X H, Qian F, Zhang Y, et al. An empirical characterization of IFTTT: ecosystem, usage, and performance[C]∥Proceedings of the 2017 Internet Measurement Conference, London, United Kingdom, 2017:398-404.
27 IFTTT[EB/OL]. [2021-02-22].
[1] 赵宏伟,霍东升,王洁,李晓宁. 基于显著性检测的害虫图像分类[J]. 吉林大学学报(工学版), 2021, 51(6): 2174-2181.
[2] 王生生,陈境宇,卢奕南. 基于联邦学习和区块链的新冠肺炎胸部CT图像分割[J]. 吉林大学学报(工学版), 2021, 51(6): 2164-2173.
[3] 林俊聪,雷钧,陈萌,郭诗辉,高星,廖明宏. 基于电影视觉特性的动态多目标实时相机规划[J]. 吉林大学学报(工学版), 2021, 51(6): 2154-2163.
[4] 姚引娣,贺军瑾,李杨莉,谢荡远,李英. 自构建改进型鲸鱼优化BP神经网络的ET0模拟计算[J]. 吉林大学学报(工学版), 2021, 51(5): 1798-1807.
[5] 赵宏伟,张子健,李蛟,张媛,胡黄水,臧雪柏. 基于查询树的双向分段防碰撞算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1830-1837.
[6] 张萌谡,刘春天,李希今,黄永平. 基于K⁃means聚类算法的绩效考核模糊综合评价系统设计[J]. 吉林大学学报(工学版), 2021, 51(5): 1851-1856.
[7] 曹洁,屈雪,李晓旭. 基于滑动特征向量的小样本图像分类方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1785-1791.
[8] 孙小雪,钟辉,陈海鹏. 基于决策树分类技术的学生考试成绩统计分析系统[J]. 吉林大学学报(工学版), 2021, 51(5): 1866-1872.
[9] 王春波,底晓强. 基于标签分类的云数据完整性验证审计方案[J]. 吉林大学学报(工学版), 2021, 51(4): 1364-1369.
[10] 欧阳丹彤,刘扬,刘杰. 故障响应指导下基于测试集的故障诊断方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1017-1025.
[11] 钱榕,张茹,张克君,金鑫,葛诗靓,江晟. 融合全局和局部特征的胶囊图神经网络[J]. 吉林大学学报(工学版), 2021, 51(3): 1048-1054.
[12] 朱小龙,谢忠. 基于机器学习的地理空间数据抽取算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1011-1016.
[13] 孙宝凤,任欣欣,郑再思,李国一. 考虑工人负荷的多目标流水车间优化调度[J]. 吉林大学学报(工学版), 2021, 51(3): 900-909.
[14] 王淑敏,陈伟. 基于连续密度隐马尔可夫模型的矿下异常行为识别算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1067-1072.
[15] 刘元宁,吴迪,朱晓冬,张齐贤,李双双,郭书君,王超. 基于YOLOv3改进的用户界面组件检测算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1026-1033.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!