吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (2): 488-495.doi: 10.13229/j.cnki.jdxbgxb20210742
Qi-kai SUN(),Nan ZHANG(),Xiao LIU,Zi-ji ZHOU
摘要:
基于Timoshenko梁理论,推导了考虑剪切滑移影响的钢-混组合梁的运动微分方程,得到了简支钢-混组合梁的自振频率和振型的显式解析表达式。提出了更适用于钢-混组合梁动力分析的动力折减系数,并给出了“刚度折减系数”和“频率折减系数”的解析表达式。与已有基于Euler-Bernoulli梁理论的动力折减系数进行了对比分析,讨论了剪力键刚度、剪切变形、转动惯量、跨高比对频率折减系数的影响。结果表明:当进行钢-混组合梁动力分析时,尤其是跨高比较小的组合梁,可以忽略转动惯量的影响,但不可忽略剪切变形的影响。
中图分类号:
1 | 聂建国,余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32(2): 3-8. |
Nie Jian-guo, Yu Zhi-wu. Research and practice of composite steel-concrete beams in China[J]. China Civil Engineering Journal, 1999, 32(2): 3-8. | |
2 | 聂建国, 陶慕轩, 吴丽丽, 等. 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45(6): 110-122. |
Nie Jian-guo, Tao Mu-xuan, Wu Li-li,et al.Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45(6): 110-122. | |
3 | 刘永健,刘江.钢-混凝土组合梁桥温度作用与效应综述[J]. 交通运输工程学报, 2020, 20(1): 42-59. |
Liu Yong-jian, Liu Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59. | |
4 | 聂建国,沈聚敏,余志武. 考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J]. 土木工程学报, 1995, 28(6): 11-17. |
Nie Jian-guo, Shen Ju-min, Yu Zhi-wu. A reduced rigidity method for calculating deformation of composite steel-concrete beams[J]. China Civil Engineering Journal, 1995, 28(6): 11-17. | |
5 | 王景全,吕志涛,刘钊. 部分剪力连接钢-混凝土组合梁变形计算的组合系数法[J]. 东南大学学报: 自然科学版, 2005, 35(): 5-10. |
Wang Jing-quan, Lv Zhi-tao, Liu Zhao. Consistency factor method for calculating deformation of composite steel-concrete girders with partial shear connection[J]. Journal of Southeast University (Natural Science Edition), 2005, 35(S1): 5-10. | |
6 | 徐荣桥,陈德权.组合梁挠度计算的改进折减刚度法[J]. 工程力学,2013, 30(2): 285-291. |
Xu Rong-qiao, Chen De-quan. Modified reduced stiffness method for calculating the deflection of composite beams[J]. Engineering Mechanics, 2013, 30(2): 285-291. | |
7 | 张云龙, 刘占莹, 吴春利, 等. 钢-混凝土组合梁静动力响应[J]. 吉林大学学报: 工学版, 2017, 47(3): 789-795. |
Zhang Yun-long, Liu Zhan-ying, Wu Chun-li,et al. Static and dynamic responses of steel-concrete composite beams[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(3): 789-795. | |
8 | 侯忠明,夏禾,张彦玲. 栓钉连接件抗剪刚度对钢-混凝土结合梁自振特性影响研究[J].中国铁道科学, 2012, 33(6): 24-29. |
Hou Zhong-ming, Xia He, Zhang Yan-ling. The influence of the shear stiffness of stud connectors on the natural vibration characteristics of steel-concrete composite beams[J]. China Railway Science, 2012, 33(6): 24-29. | |
9 | 侯忠明,夏禾,王元清,等. 钢-混凝土组合梁动力折减系数研究[J]. 振动与冲击, 2015, 34(4): 74-81. |
Hou Zhong-ming, Xia He, Wang Yuan-qing, et al. Dynamic redution coefficients for a steel-concrete composite beam[J]. Journal of Vibration and Shock, 2015, 34(4): 74-81. | |
10 | 张云龙, 郭阳阳, 王静, 等. 钢-混组合梁的固有频率及其振型[J]. 吉林大学学报: 工学版, 2020, 50(2): 581-588. |
Zhang Yun-long, Guo Yang-yang, Wang Jing,et al. Natural frequency and mode of vibration of steel-concrete composite beams[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 581-588. | |
11 | 孙琪凯, 张楠, 刘潇, 等. 基于能量法分析考虑纵向刚度分布的钢-混组合梁自振特性[J]. 振动与冲击, 2021, 40(10): 67-72. |
Sun Qi-kai, Zhang Nan, Liu Xiao, et al. Free vibration characteristics of steel-concrete composite beams considering longitudinal stiffness distribution based on energy method[J]. Journal of Vibration and Shock, 2021, 40(10): 67-72. | |
12 | Sun Q K, Zhang N, Liu X, et al. Free vibrations of steel-concrete composite beams by the dynamic direct stiffness method[J]. International Journal of Structural Stability and Dynamic, 2021, 21(4): 2150049. |
13 | Berczyński S, Wróblewski T. Vibration of steel-concrete composite beams using the Timoshenko beam model[J]. Journal of Vibration and Control, 2005, 11(6): 829-848. |
14 | Xu R Q, Wu Y F. Static dynamic and buckling analysis of partial interaction composite members using Timoshenko's beam theory[J]. International Journal of Mechanical Sciences, 2007, 49(10): 1139-1155. |
15 | Nguyen Q H, Hjiaj M, Grognec P L. Analytical approach for free vibration analysis of two-layer Timoshenko beams with interlayer slip[J]. Journal of Sound and Vibration, 2012, 331(12): 2949-2961. |
16 | Lin J P, Wang G N, Bao G J, et al. Stiffness matrix for the analysis and design of partial-interaction composite beams[J]. Construction and Building Materials, 2017, 156: 761-772. |
17 | Lin J P, Wang G N, Xu R Q. Variational principles and explicit finite-element formulations for the dynamic analysis of partial-interaction composite beams[J]. Journal of Engineering Mechanics-ASCE, 2020, 146(6): 04020055. |
18 | Sun Q K, Zhang N, Liu X, et al. An equivalent single-layer theory for free vibration analysis of steel-concrete composite beams[J]. Steel and Composite Structures, 2021, 38(3): 281-291. |
[1] | 叶华文,段智超,刘吉林,周渝,韩冰. 正交异性钢⁃混组合桥面的轮载扩散效应[J]. 吉林大学学报(工学版), 2022, 52(8): 1808-1816. |
[2] | 王立峰,肖子旺,于赛赛. 基于Bayesian网络的多塔斜拉桥挂篮系统风险分析的新方法[J]. 吉林大学学报(工学版), 2022, 52(4): 865-873. |
[3] | 张彦玲,王灿,张旭,王昂洋,李运生. 不同吊杆形式悬索桥人致振动分析及舒适度评价[J]. 吉林大学学报(工学版), 2022, 52(11): 2644-2652. |
[4] | 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078. |
[5] | 陈巍,万田保,王忠彬,厉萱,沈锐利. 悬索桥主缆除湿的内部送气管道设计与性能[J]. 吉林大学学报(工学版), 2021, 51(5): 1749-1755. |
[6] | 郭殊伦,钟铁毅,闫志刚. 大跨度斜拉桥拉索的抖振响应计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1756-1762. |
[7] | 高凯,刘纲. 全局临界强度分枝-约界法的有效强度改进[J]. 吉林大学学报(工学版), 2021, 51(2): 597-603. |
[8] | 宫亚峰,宋加祥,谭国金,毕海鹏,刘洋,单承新. 多车桥梁动态称重算法[J]. 吉林大学学报(工学版), 2021, 51(2): 583-596. |
[9] | 孔庆雯,谭国金,王龙林,王勇,魏志刚,刘寒冰. 基于有限元方法的裂缝箱梁桥自振特性分析[J]. 吉林大学学报(工学版), 2021, 51(1): 225-232. |
[10] | 陈华,陈耀嘉,谢斌,王鹏凯,邓朗妮. CFRP筋粘结式锚固体系界面失效演化机制及粘结强度计算[J]. 吉林大学学报(工学版), 2020, 50(5): 1698-1708. |
[11] | 宫亚峰,宋加祥,毕海鹏,谭国金,胡国海,林思远. 装配式箱涵结构缩尺模型静载试验及有限元分析[J]. 吉林大学学报(工学版), 2020, 50(5): 1728-1738. |
[12] | 高昊,王君杰,刘慧杰,王剑明. 连续梁桥地震行为可控设计准则及实用装置[J]. 吉林大学学报(工学版), 2020, 50(5): 1718-1727. |
[13] | 蒲黔辉,刘静文,赵刚云,严猛,李晓斌. 高性能树脂混凝土加固混凝土偏压柱承载力理论分析[J]. 吉林大学学报(工学版), 2020, 50(2): 606-612. |
[14] | 张云龙,郭阳阳,王静,梁东. 钢-混凝土组合梁的固有频率及其振型[J]. 吉林大学学报(工学版), 2020, 50(2): 581-588. |
[15] | 王伯昕,杨海涛,王清,高欣,陈小旭. 基于补充改进集合经验模态分析法⁃多尺度排列熵分析桥梁振动信号优化滤波方法[J]. 吉林大学学报(工学版), 2020, 50(1): 216-226. |
|