吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (3): 841-852.doi: 10.13229/j.cnki.jdxbgxb20221249

• 通信与控制工程 • 上一篇    

四旋翼无人机寿命预测和自主维护方法

申富媛1,2(),李炜1,2(),蒋栋年1,2   

  1. 1.兰州理工大学 电气工程与信息工程学院,兰州 730050
    2.兰州理工大学 甘肃省工业过程先进控制重点实验室,兰州 730050
  • 收稿日期:2022-09-27 出版日期:2023-03-01 发布日期:2023-03-29
  • 通讯作者: 李炜 E-mail:shenfy@lut.edu.cn;liwei@lut.edu.cn
  • 作者简介:申富媛(1985-),女,博士研究生. 研究方向:动态系统故障诊断与容错控制,故障预测与健康评估.E-mail:shenfy@lut.edu.cn
  • 基金资助:
    国家自然科学基金项目(62063017)

Life prediction and self⁃maintenance method of quadrotor unmanned aerial vehicle

Fu-yuan SHEN1,2(),Wei LI1,2(),Dong-nian JIANG1,2   

  1. 1.College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China
    2.Key Laboratory of Gansu Advanced Control for Industrial Processes,Lanzhou University of Technology,Lanzhou 730050,China
  • Received:2022-09-27 Online:2023-03-01 Published:2023-03-29
  • Contact: Wei LI E-mail:shenfy@lut.edu.cn;liwei@lut.edu.cn

摘要:

针对四旋翼无人机运行过程中执行器退化引起的剩余寿命缩短问题,提出一种基于风险评价函数的模型预测控制自主维护策略。首先,通过深入分析无人机控制机理构建了自主维护体系架构。其次,基于系统失效阈值的定义,得到悬停状态下无人机剩余寿命分布的解析解,并依据风险评价结果自适应修正模型预测权值矩阵 QR 中元素值实现自主维护,从而在无人机性能与寿命之间达到更好的折中平衡。最后,仿真实验结果表明,本文提出的自主维护策略,可使执行器隐含退化的无人机剩余寿命延长616 min,并保持较好的机体性能。

关键词: 控制理论与控制科学, 四旋翼无人机, 执行器退化, 剩余寿命预测, 模型预测控制, 在线自主维护

Abstract:

A model predictive control autonomous maintenance strategy based on risk evaluation function was proposed to address the remaining life shortening problem caused by actuator degradation during the operation of quadrotor unmanned aerial vehicle(UAV). Firstly, the architecture of autonomous maintenance system was constructed through in-depth analysis of the control mechanism of the UAV. Secondly, based on the definition of the system failure threshold, the analytical solution of the remaining life distribution of the UAV under hovering condition was obtained, and the values of Q and R elements of the prediction weight matrix of the model were adaptively modified based on the risk evaluation results to realize autonomous maintenance, so as to achieve a better compromise between UAV performance and life. Finally, the simulation experiment results show that the proposed autonomous maintenance strategy can extend the remaining life of the UAV with implied actuator degradation by 616 min and maintain better airframe performance.

Key words: control theory and control science, quadrotor UAV, actuator degradation, residual life prediction, model predictive control, online self-mainte

中图分类号: 

  • TP273

图1

四旋翼无人机结构图"

图2

四旋翼无人机闭环系统框图"

图3

四旋翼无人机系统自主维护结构图"

图4

执行器退化过程示意图"

图5

风险评价函数Jrisk曲线"

图6

Δq、Δr随风险函数Jrisk调整示意图"

图7

基于运行风险评价的四旋翼无人机自主维护算法流程图"

图8

执行器退化测量值和估计值"

图9

估计误差与测量误差比较"

图10

执行器退化时四旋翼无人机响应曲线"

图11

四旋翼无人机剩余寿命分布"

图12

风险评价函数Jrisk变化曲线"

图13

Δq、Δr调整曲线"

图14

延寿控制Q、R调整曲线"

图15

四旋翼无人机延寿后剩余寿命分布"

表1

不同延寿策略下失效阈值和机体寿命"

方法失效阈值机体寿命
未延寿6.85931313
文献[256.95701914
本文7.56181929

表2

未延寿与不同延寿策略稳态性能(ess)比较"

方法预测时刻/min
1300150017001900
未延寿2.0946123.6915146.1453173.0268
文献[252.72012.99×10-42.22×10-56.5776
本文1.62761.95×10-43.57×10-70.3058
1 张友民, 余翔, 屈耀红, 等. 无人机自主控制关键技术新进展[J]. 科技导报, 2017, 35(7):39-48.
Zhang You-min, Yu Xiang, Qu Yao-hong, et al. New developments on key techniques in UAV autonomous control[J]. Science & Technology Review, 2017, 35(7): 39-48.
2 郝伟, 鲜斌. 四旋翼无人机姿态系统的非线性容错控制设计[J]. 控制理论与应用, 2015, 32(11): 1457-1463.
Hao Wei, Xian Bin. Nonlinear fault tolerant control design for quadrotor unmanned aerial vehicle attitude system[J]. Control Theory & Applications, 2015, 32(11): 1457-1463.
3 Abbaspour A, Aboutalebi P, Yen K K, et al. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: application in UAV[J]. ISA Transactions, 2017, 67: 317-329.
4 王燕萍, 吕震宙, 赵新攀. 基于Markov Chain Monte Carlo的幂律过程的Bayesian分析[J]. 航空动力学报, 2010, 25(1):152-159.
Wang Yan-ping, Lv Zhen-zhou, Zhao Xin-pan. Bayesian analysis for the power law process based on Markov Chain Monte Carlo[J]. Journal of Aerospace Power, 2010, 25(1): 152-159.
5 王华伟, 高军, 吴海桥. 基于竞争失效的航空发动机剩余寿命预测[J]. 机械工程学报, 2014, 50(6):197-205.
Wang Hua-wei, Gao Jun, Wu Hai-qiao. Residual remaining life prediction based on competing failures for aircraft engines[J]. Journal of Mechanical Engineering, 2014, 50(6): 197-205.
6 朱磊, 左洪福, 蔡景. 基于Wiener过程的民用航空发动机性能可靠性预测[J]. 航空动力学报, 2013, 28(5): 1006-1012.
Zhu Lei, Zuo Hong-fu, Cai Jing. Performance reliability prediction for civil aviation aircraft engine based on Wiener process[J]. Journal of Aerospace Power, 2013, 28(5): 1006-1012.
7 Muneer A, Taib S M, Fati S M, et al. Deep-learning based prognosis approach for remaining useful life prediction of turbofan engine[J]. Symmetry, 2021, 13(10): No.1861.
8 苗建国, 王剑宇, 张恒, 等. 无人机故障诊断技术研究进展概述[J]. 仪器仪表学报, 2020, 41(9): 56-69.
Miao Jian-guo, Wang Jian-yu, Zhang Heng, et al. Review of the development of fault diagnosis technology for unmanned aerial vehicle[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 56-69.
9 罗晓亮, 涂龙, 王浩旭, 等. 无人机故障预测与健康管理研究现状及发展[J]. 计算机测量与控制, 2021, 29(1): 1-5.
Luo Xiao-liang, Tu Long, Wang Hao-xu, et al. Research on status and development trend of prognostics and health management for military unmanned aerial vehicles[J]. Computer Measurement & Control 2021, 29(1): 1-5.
10 Guo D F, Zhong M Y, Ji H Q, et al. A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors[J]. Neurocomputing, 2018, 319: 155-163.
11 Liang S J, Zhang S R, Huang Y P, et al. Data-driven fault diagnosis of FW-UAVs with consideration of multiple operation conditions[J]. ISA Transactions, 2022, 126: 472-485.
12 Sierra G, Orchard M, Goebel K, et al.Battery health management for small-size rotary-wing electric unmanned aerial vehicles: an efficient approach for constrained computing platforms[J]. Reliability Engineering and System Safety, 2019, 182: 166-178.
13 Vachtsevanos G, Georgoulas G, Nikolakopoulos G. Fault diagnosis, failure prognosis and fault tolerant control of aerospace/unmanned aerial systems[C]∥24th Mediterranean Conference on Control and Automation, Athens, Greece, 2016: 366-371.
14 Niu G, Liu S Y. Demagnetization monitoring and life extending control for permanent magnet-driven traction systems[J]. Mechanical Systems and Signal Processing, 2018, 103: 264-279.
15 Si, X S, Ren Z Q, Hu X X,et al. A novel degradation modeling and prognostic framework for closed-loop systems with degrading actuator[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9635-9647.
16 Zhang Y M, Chamseddine A, Rabbath C, et al. Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed[J]. Journal of the Franklin Institute, 2013, 350: 2396-2422.
17 Gautam D, Cheolkeun H. Control of a quadrotor using a smart self-tuning fuzzy PID controller[J]. International Journal of Advanced Robotic Systems, 2013, 10: 1-9.
18 Joyo M K, Kadir S F A K. LQR based controller design for altitude and longitudinal movement of quad-rotor[J]. Journal of Applied Sciences, 2016, 16(12): 588-593.
19 Wang H B, Li Z, Xiong H Y, et al. Robust H attitude tracking control of a quadrotor UAV on SO(3) via variation-based linearization and interval matrix approach[J]. ISA Transactions, 2019,87: 10-16.
20 曾小勇, 彭辉, 吴军. 基于RBF-ARX模型的改进多变量预测控制及应用[J]. 中南大学学报: 自然科学版, 2015, 46(10): 3710-3717.
Zeng Xiao-yong, Peng Hui, Wu Jun. An improved multivariable RBF-ARX model-based nonlinear model predictive control approach and application[J]. Journal of Central South University (Science and Technology), 2015, 46(10): 3710-3717.
21 贾鹤鸣, 柳泽铭, 张金阳. 基于滑模PID的微型旋翼飞行器轨迹跟踪控制[J]. 吉林大学学报: 信息科学版, 2014, 32(4): 383-388.
Jia He-ming, Liu Ze-ming, Zhang Jin-yang. Trajectory tracking control of rotating wing micro aerial vehicle based on sliding mode PID[J]. Journal of Jilin University (Information Science Edition), 2014, 32(4): 383-388.
22 齐国元, 李阔, 王琨. 基于补偿函数观测器的四旋翼无人机姿态受限控制[J/OL]. [2022-09-20].
23 司小胜, 胡昌华, 周东华. 带测量误差的非线性退化过程建模与剩余寿命估计[J]. 自动化学报, 2013, 39(5): 530-541.
Si Xiao-sheng, Hu Chang-hua, Zhou Dong-hua. Nonlinear degradation process modeling and remaining useful life estimation subject to measurement error[J]. Acta Automatica Sinica, 2013, 39(5): 530-541.
24 司小胜, 胡昌华, 张琪, 等. 不确定退化测量数据下的剩余寿命估计[J]. 电子学报, 2015, 43(1): 30-35.
Si Xiao-sheng, Hu Chang-hua, Zhang Qi, et al. Estimating remaining useful life under uncertain degradation measurements[J]. Acta Electronica Sinica, 2015, 43(1): 30-35.
25 李炜, 李宗仁, 毛海杰. 基于反馈控制系统实时寿命预测的延寿策略研究[J]. 兰州理工大学学报,2021, 47(6): 74-83.
Li Wei, Li Zong-ren, Mao Hai-jie. Study on life extension strategy based on real-time life prediction of feedback control system[J]. Journal of Lanzhou University of Technology, 2021, 47(6): 74-83.
[1] 谢波,高榕,许富强,田彦涛. 低附着路况条件下人车共享转向系统稳定控制[J]. 吉林大学学报(工学版), 2023, 53(3): 713-725.
[2] 王德军,张凯然,徐鹏,顾添骠,于文雅. 基于车辆执行驱动能力的复杂路况速度规划及控制[J]. 吉林大学学报(工学版), 2023, 53(3): 643-652.
[3] 何德峰,周丹,罗捷. 跟随式车辆队列高效协同弦稳定预测控制[J]. 吉林大学学报(工学版), 2023, 53(3): 726-734.
[4] 胡云峰,于彤,杨惠策,孙耀. 低温环境下燃料电池启动优化控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 2034-2043.
[5] 吴文静,战勇斌,杨丽丽,陈润超. 考虑安全间距的合流区可变限速协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(6): 1315-1323.
[6] 李文航,倪涛,赵丁选,张泮虹,师小波. 基于集合卡尔曼滤波的高机动救援车辆主动悬挂控制方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2816-2826.
[7] 杨志军,高忠义,王丽君,黄观新,危宇泰. 面向刚柔耦合定位平台的模型预测控制算法[J]. 吉林大学学报(工学版), 2022, 52(12): 2806-2815.
[8] 彭浩楠,唐明环,查奇文,王伟忠,王伟达,项昌乐,刘玉龙. 自动驾驶汽车双车道换道最优轨迹规划方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2852-2863.
[9] 鲜斌,张诗婧,韩晓薇,蔡佳明,王岭. 基于强化学习的无人机吊挂负载系统轨迹规划[J]. 吉林大学学报(工学版), 2021, 51(6): 2259-2267.
[10] 贾超,徐洪泽,王龙生. 基于多质点模型的列车自动驾驶非线性模型预测控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1913-1922.
[11] 马苗苗,潘军军,刘向杰. 含电动汽车的微电网模型预测负荷频率控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1644-1652.
[12] 唐晓峰, 高峰, 徐国艳, 丁能根, 蔡尧, 刘建行. 基于智能空间-车框架理论的车辆行驶运动学状态的预测[J]. 吉林大学学报(工学版), 2015, 45(5): 1395-1401.
[13] 许芳1, 2, 靳伟伟2, 陈虹1, 2, 张振威2. 一种模型预测控制器的FPGA硬件实现[J]. 吉林大学学报(工学版), 2014, 44(4): 1042-1050.
[14] 石屹然, 田彦涛, 史红伟, 张立. 基于Modified Volterra模型的SI发动机空燃比非线性模型预测控制[J]. 吉林大学学报(工学版), 2014, 44(2): 538-547.
[15] 李刚, 宗长富, 陈国迎, 洪伟, 何磊. 线控四轮独立驱动轮毂电机电动车集成控制[J]. , 2012, 42(04): 796-802.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!