吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (7): 2115-2120.doi: 10.13229/j.cnki.jdxbgxb.20220799

• 计算机科学与技术 • 上一篇    

基于Fibonacci变换和改进Logistic-Tent混沌映射的图像加密方案

郭现峰(),李浩华,魏金玉   

  1. 西南民族大学 计算机科学与工程学院,成都 610041
  • 收稿日期:2022-06-23 出版日期:2023-07-01 发布日期:2023-07-20
  • 作者简介:郭现峰(1978-),男,副教授,博士.研究方向:网络与信息安全.E-mail: gxf@swun.edu.cn
  • 基金资助:
    国家自然科学基金项目(61681240391);四川省教育厅重点项目(18ZA0512);西南民族大学中央高校基本科研业务费专项资金项目(2018NQN22)

Image encryption scheme based on Fibonacci transform and improved Logistic-Tent chaotic map

Xian-feng GUO(),Hao-hua LI,Jin-yu WEI   

  1. School of Computer Science and Engineering,Southwest Minzu University,Chengdu 610041,China
  • Received:2022-06-23 Online:2023-07-01 Published:2023-07-20

摘要:

利用混沌映射构造的密码算法具有密钥空间大、安全性高、性能优越等特点,适合加密数据量大、关联性强的多媒体数据。为了进一步提高此类算法的安全特性,很多学者采用复杂的多维混沌迭代加密数据,但同时也增加了计算复杂度。为了降低计算复杂度、提高加解密过程的计算性能,本文利用Fibonacci变换和Logistic-Tent复合混沌映射的优点增强加密过程中的置乱-扩散效果,构造了一个新的图像加密算法。安全性分析和仿真实验证明,本文算法不仅加解密速度快,还能有效抵御暴力破解、信息熵攻击、差分攻击和统计类图像攻击,应用和推广价值较强。

关键词: 复合混沌, 图像, Fibonacci, 加密变换, 密钥空间

Abstract:

At present, in the field of image data encryption, chaos theory encryption method is more prominent. The high randomness, unpredictability and extreme sensitivity of initial parameters of chaotic system provide favorable guarantee for image data security. Based on this kind of mapping, a large number of complex chaotic mapping models have been proposed by scholars at home and abroad. Compared with one-dimensional chaotic mapping, the security has been greatly improved, but the computational complexity has also increased. Therefore, this paper proposes a one-dimensional compound Logistic-Tent algorithm for chaotic mapping, which increases the mapping range of chaotic mapping, reduces the computational complexity and ensures the security of chaotic sequences. Combined with Fibonacci scrambling transform, this algorithm adopts scrambling - diffusion encryption process. Simulation experiments show that the scheme has high encryption rate, and can effectively defend against brute force cracking, entropy attack, difference attack and statistical image attack.

Key words: composite chaotic, image, Fibonacci, encryption, key space

中图分类号: 

  • TP309.7

图1

混沌映射轨迹分布"

图2

Lyapunov指数"

图3

加密算法流程"

表1

加密算法效率对比"

图像大小加密时间/s
文献[10文献[11文献[12本文算法
256×2561.65450.01970.00420.0224
512×5124.50500.15870.00770.0063

表2

文献[10-14]算法与本文算法的密文相邻像素相关性对比"

方 法水平垂直对角
本文0.00140.00660.0022
文献[100.00970.00140.0031
文献[110.00150.00650.0032
文献[120.01060.00790.0043
文献[130.00180.00270.0019
文献[140.00010.00070.0037

表3

不同算法密文信息熵对比"

方 法香农信息熵
R通道G通道B通道
文献[137.99007.99007.9901
文献[147.98967.98937.9896
本文算法7.99197.99227.9921

表4

密文图像NPCR和UACI对比结果"

方 法NPCRUACI
文献[1099.5900%33.4600%
文献[1199.6089%33.4623%
文献[1299.5468%33.4445%
文献[1399.6100%33.4633%
文献[1499.6231%33.4575%
本文方法99.5979%33.1144%
1 Tong X J. Design of an image encryption scheme based on a multiple chaotic map[J]. Communications in Nonlinear Science & Numerical Simulation, 2013, 18(7): 1725-1733.
2 Parvin Z, Seyedarabi H, Shamsi M. A new secure and sensitive image encryption scheme based on new substitution with chaotic function[J]. Multimedia Tools & Applications, 2016, 75(17): 10631-10648.
3 李春虎,罗光春,李春豹.基于斜帐篷混沌映射和Arnold变换的图像加密方案[J].计算机应用研究, 2018, 35(11): 3424-3427.
Li Chun-hu, Luo Guang-chun, Li Chun-bao. Image encryption scheme based on skew tent chaotic map and Arnold transformation[J]. Application Research of Computers, 2018, 35(11): 3424-3427.
4 Pak C, Huang L. A new color image encryption using combination of the 1D chaotic map[J]. Signal Processing, 2017, 138: 129-137.
5 Arroyo D, Rhouma R, Alvarez G, et al. On the security of a new image encryption scheme based on chaotic map lattices[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2008, 18(3): No.033118.
6 Skrobek A. Cryptanalysis of chaotic stream cipher[J]. Physics Letters A, 2007, 363(12): 84-90.
7 Hua Z, Zhou Y, Pun C M, et al. 2D Sine logistic modulation map for image encryption[J]. Information Sciences: An International Journal, 2015, 297: 80-94.
8 Stefanski A, Dabrowski A, Kapitaniak T. Evaluation of the largest Lyapunov exponent in dynamical systems with time delay[J]. Chaos Solitons & Fractals, 2005, 23(5): 1651-1659.
9 Eckmann J, Ruelle D. Ergodic theory of chaos and strange attractors[J]. Review of Modern Physics, 2008, 57(3): 1115-1125.
10 王海珍, 廉佐政, 谷文成. 基于L-P混沌映射和AES的图像加密算法[J]. 计算机仿真, 2021, 38(10): 217-221.
Wang Hai-zhen, Lian Zuo-zheng, Gu Wen-cheng. Image encryption algorithm based on L-P chaotic map and AES[J]. Computer Simulation, 2021, 38(10): 217-221.
11 芮杰, 杭后俊. 基于超混沌系统的明文关联图像加密算法[J]. 图学学报, 2020, 41(6): 917-921.
Rui jie, Hang hou-jun. Plaintext correlation image encryption algorithm based on hyper-chaotic system[J]. Journal of Graphics, 2020, 41(6): 917-921.
12 班多晗, 吕鑫, 王鑫元. 基于一维混沌映射的高效图像加密算法[J].计算机科学, 2020, 47(4): 278-284.
Ban Duo-han, Lv Xin, Wang Xin-yuan. Efficient image encryption algorithm based on 1D chaotic map[J]. Computer Science, 2020, 47(4): 278-284.
13 朱凯歌, 武相军, 任广龙. 基于DNA动态编码和混沌系统的彩色图像无损加密算法[J].计算机应用研究, 2020, 37(): 230-233.
Zhu Kai-ge, Wu Xiang-jun, Ren Guang-long. Color image lossless encryption algorithm based on DNA dynamic coding and chaotic system[J]. Application Research of Computers, 2020, 37(Sup.2): 230-233.
14 Liu H, Kadir A. Asymmetric color image encryption scheme using 2D discrete-time map[J]. Signal Processing, 2015, 113: 104-112.
[1] 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426.
[2] 姜宇,潘家铮,陈何淮,符凌智,齐红. 基于分割方法的繁体中文报纸文本检测[J]. 吉林大学学报(工学版), 2023, 53(4): 1146-1154.
[3] 白琳,刘林军,李轩昂,吴沙,刘汝庆. 基于自监督学习的单目图像深度估计算法[J]. 吉林大学学报(工学版), 2023, 53(4): 1139-1145.
[4] 赵宏伟,张健荣,朱隽平,李海. 基于对比自监督学习的图像分类框架[J]. 吉林大学学报(工学版), 2022, 52(8): 1850-1856.
[5] 申铉京,张雪峰,王玉,金玉波. 像素级卷积神经网络多聚焦图像融合算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1857-1864.
[6] 曲福恒,丁天雨,陆洋,杨勇,胡雅婷. 基于邻域相似性的图像码字快速搜索算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1865-1871.
[7] 李娜,谭韶生. 基于空间邻域信息的击剑连续动作图像分割[J]. 吉林大学学报(工学版), 2022, 52(7): 1639-1644.
[8] 王震,盖孟,许恒硕. 基于虚拟现实技术的三维场景图像表面重建算法[J]. 吉林大学学报(工学版), 2022, 52(7): 1620-1625.
[9] 王生生,姜林延,杨永波. 基于最优传输特征选择的医学图像分割迁移学习[J]. 吉林大学学报(工学版), 2022, 52(7): 1626-1638.
[10] 杨怀江,王二帅,隋永新,闫丰,周跃. 简化型残差结构和快速深度残差网络[J]. 吉林大学学报(工学版), 2022, 52(6): 1413-1421.
[11] 刘铭,杨雨航,邹松霖,肖志成,张永刚. 增强边缘检测图像算法在多书识别中的应用[J]. 吉林大学学报(工学版), 2022, 52(4): 891-896.
[12] 贾海洋,夏睿,吕安祺,管噌璇,陈娟,王雷. 基于模板融合的超声医学影像全景拼接方法[J]. 吉林大学学报(工学版), 2022, 52(4): 916-924.
[13] 王雪,李占山,吕颖达. 基于多尺度感知和语义适配的医学图像分割算法[J]. 吉林大学学报(工学版), 2022, 52(3): 640-647.
[14] 李向军,涂洁莹,赵志宾. 基于多尺度融合卷积神经网络的熔解曲线有效性分类[J]. 吉林大学学报(工学版), 2022, 52(3): 633-639.
[15] 李茂月,刘硕,田帅,肖桂风. 薄壁件铣削加工颤振的图像特征提取与识别[J]. 吉林大学学报(工学版), 2022, 52(2): 425-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!