吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (7): 1620-1625.doi: 10.13229/j.cnki.jdxbgxb20210581

• 计算机科学与技术 • 上一篇    

基于虚拟现实技术的三维场景图像表面重建算法

王震1,2(),盖孟2,3,许恒硕4   

  1. 1.沈阳理工大学 艺术设计学院,沈阳 110159
    2.北京大学 北京市虚拟仿真与可视化工程技术研究中心,北京 100871
    3.北京大学 图形与交互技术实验室,北京 100871
    4.南开大学 计算机科学学院,天津 300071
  • 收稿日期:2021-06-25 出版日期:2022-07-01 发布日期:2022-08-08
  • 作者简介:王震(1966-),男,副教授.研究方向:计算机视觉,图形图像处理.E-mail:wangzhen4512@yeah.net
  • 基金资助:
    国家自然科学基金重点项目(61632003)

Surface reconstruction algorithm of 3D scene image based on virtual reality technology

Zhen WANG1,2(),Meng GAI2,3,Heng-shuo XU4   

  1. 1.School of Art and Design,Shenyang Ligong University,Shenyang 110159,China
    2.Beijing Virtual Simulation and Visualization Engineering Technology Research Center,Peking University,Beijing 100871,China
    3.Graphics and Interactive Technology Laboratory,Peking University,Beijing 100871,China
    4.College of Computer Science,Nankai University,Tianjing 300071,China
  • Received:2021-06-25 Online:2022-07-01 Published:2022-08-08

摘要:

针对传统三维场景图像表面重建特征点匹配精度不高、计算复杂等实际问题,提出基于虚拟现实技术的三维场景图像表面重建算法。使用小波分解处理图像纹理信息,量化编码图像,并把视觉点和图像的间距作为度量值,挑选恰当临界值完成图像压缩,剔除三维场景图像冗余数据;计算图像中的启发式信息,更新信息素矩阵,运用信息素矩阵临界值明确像素点是否为图像边缘点,提取三维场景图像边缘信息;利用虚拟现实设备计算三维场景最小识别距离,推算理论图像投影值与实际投影值偏差,通过偏差值校准图像表面重建像素值,完成高精度三维场景图像表面重建目标。仿真结果表明,所提方法可有效捕捉三维场景图像中的关键特征,重建后的图像分辨率得到显著提升。

关键词: 虚拟现实技术, 三维场景, 图像表面重建, 粒子群, 小波分解

Abstract:

Aiming at the problems of low matching precision and complex calculation of traditional 3D scene surface reconstruction feature points, a new algorithm based on virtual reality technology is proposed. The image texture information is processed by wavelet decomposition, the image is encoded quantitatively and the distance between the visual points and images is taken as the measurement value. The appropriate critical value is selected to complete image compression and the redundant data of 3D scene image is eliminated. The heuristic information in the image is calculated, the pheromone matrix is updated, the critical value of the pheromone matrix is used to determine whether the pixel point is the edge point of the image, and the edge information of the 3D scene image is extracted. The minimum recognition distance of 3D scene is calculated by virtual reality equipment, and the deviation between theoretical image projection value and actual projection value is calculated. The pixel value of image surface reconstruction is calibrated by deviation value, and the surface reconstruction target of high precision 3D scene image is completed. The simulation results show that the proposed method can capture the key features of 3D scene image effectively, and the resolution of reconstructed image is improved significantly.

Key words: virtual reality technology, 3D scene, Image surface reconstruction, particle swarm optimization, wavelet decomposition

中图分类号: 

  • TP393

图1

虚拟现实技术下三维场景图像表面重建过程"

表1

3种重建方法的帧跟踪实验结果"

帧编号成功跟踪像素个数
文献[4文献[5本文方法
1404149
2242630
3556
4111314
5646970
6394245
7589
8212630
9333740

表2

3种重建方法的分辨率检测实验结果"

帧编号文献[4文献[5本文方法
11025×7691025×7691290×1030
21036×7701290×10301290×1030
3650×490750×5201290×1030
41290×10301290×11001290×1030
51025×7691250×10101290×1030
61025×7691290×11001290×1030
7650×490750×5201290×1030
81290×10301290×11001290×1030
9650×490700×5101290×1030
1 Lu L, Ma J, Qu S. Value of virtual reality technology in image inspection and 3d geometric modeling[J]. IEEE Access, 2020(99):1-13.
2 Ertugrul I. Characterization of a micro beam fabricated with 3D technology using image processing algorithm[J]. Current Nanoscience, 2020, 16(6):1024-1030.
3 Wang H. Landscape design of coastal area based on virtual reality technology and intelligent algorithm[J]. Journal of Intelligent and Fuzzy Systems, 2019, 37(5):5955-5963.
4 刘长英, 王喜超. 高速列车车头表面三维重建算法[J]. 沈阳工业大学学报, 2019, 41(5):529-533.
Liu Chang-ying, Wang Xi-chao. 3D reconstruction algorithm of high speed train head surface[J]. Journal of Shenyang University of Technology, 2019, 41(5):529-533.
5 薛俊诗,易辉,吴止锾,等. 一种基于场景图分割的混合式多视图三维重建方法[J].自动化学报,2020,46(4):782-795.
Xue Jun-shi, Yi Hui, Wu Zhi-huan, et al. A hybrid multi view 3D reconstruction method based on scene graph segmentation[J]. Journal of Automation, 2020,46(4):782-795.
6 杨淑云, 刘永春. 小场景交互式稠密三维重建系统[J]. 图学学报, 2019, 40(2):154-162.
Yang Shu-yun, Liu Yong-chun. Interactive dense 3D reconstruction system for small scenes[J]. Journal of Graphics, 2019, 40(2):154-162.
7 Huang R, Sun M. Network algorithm real-time depth image 3D human recognition for augmented reality[J]. Journal of Real-Time Image Processing, 2021, 18(2):307-319.
8 葛启杰,史金龙,孙蕴瀚.基于二值空间编解码的结构光三维场景重建[J].激光与光电子学进展,2020,57(2):313-319.
Ge Qi-jie, Shi Jin-long, Sun Yun-han. Structured light 3D scene reconstruction based on binary space encoding and decoding[J]. Progress in Laser and Optoelectronics, 2020,57(2):313-319.
9 Zhou Y, Shen S, Hu Z. Detail preserved surface reconstruction from point cloud[J]. Sensors, 2019, 19(6):1278.
10 肖雄武.具备结构感知功能的倾斜摄影测量场景三维重建[J]. 测绘学报,2019,48(6):802.
Xiao Xiong-wu. 3D reconstruction of oblique photogrammetric scene with structure perception function[J]. Journal of Surveying and Mapping, 2019,48(6):802.
11 Han Jing, Xu Qin-feng, Chen Jian-nong, et al. Reconstruction of an underwater scattered image via incoherent modulation instability: erratum[J]. Optics Letters, 2019, 44(6):1443-1449.
12 王年,胡旭阳,朱凡,等. 基于视图感知的单视图三维重建算法[J].电子与信息学报,2020,42(12):3053-3060.
Wang Nian, Hu Xu-yang, Zhu Fan, et al. Single view 3D reconstruction algorithm based on view perception[J]. Journal of Electronics and Information, 2020,42(12):3053-3060.
13 Li W, Liao Q, Ran Q. Stereo-imaging LSPIV (SI-LSPIV) for 3D water surface reconstruction and discharge measurement in mountain river flows[J]. Journal of Hydrology, 2019, 578(7):124099.
14 刘震, 汪家悦, 陈丽娟. 基于灭点优化的单幅图像三维重建[J]. 浙江工业大学学报, 2019, 47(2):66-71.
Liu Zhen, Wang Jia-yue, Chen Li-juan. Single image 3D reconstruction based on vanishing point optimization[J]. Journal of Zhejiang University of Technology, 2019, 47(2):66-71.
15 Hafeez J, Lee J, Kwon S, et al. Evaluating feature extraction methods with synthetic noise patterns for image-based modelling of texture-less objects[J]. Remote Sensing, 2020, 12(23):3886.
16 宋燕飞,罗尧治,沈雁彬,等. 基于双目视觉与图像识别的网架结构三维重建[J].空间结构,2020,26(4):28-35, 74.
Song Yan-fei, Luo Yao-zhi, Shen Yan-bin, et al. 3D reconstruction of grid structure based on binocular vision and image recognition[J]. Space Structure, 2020,26(4):28-35, 74.
17 Tachella J, Altmann Y, Ren X, et al. Bayesian 3d reconstruction of complex scenes from single-photon lidar data[J]. SIAM Journal on Imaging Sciences, 2019, 12(1):521-550.
18 杨锦发,晏磊,赵红颖,等. 融合粗糙深度信息的低纹理物体偏振三维重建[J].红外与毫米波学报,2019,38(6):819-827.
Yang Jin-fa, Yan Lei, Zhao Hong-ying, et al. Polarimetric 3D reconstruction of low texture objects based on rough depth information[J]. Journal of infrared and Millimeter Wave,2019,38(6):819-827.
19 He K, Sui C, Lyu C, et al. 3D reconstruction of objects with occlusion and surface reflection using a dual monocular structured light system[J]. Applied Optics, 2020, 59(29):9259-9271.
20 陈思园, 宋展, 尹业安. 基于智能手机的三维重建方法[J]. 计算机工程, 2019, 45(3):231-237, 242.
Chen Si-yuan, Song Zhan, Yin Ye-an. 3D reconstruction method based on smart phone[J]. Computer Engineering, 2019, 45(3):231-237, 242.
[1] 陈昭明,邹劲松,王伟,石明全. 改进粒子群神经网络融合有限元分析的铸锻双控动态成型多目标优化[J]. 吉林大学学报(工学版), 2022, 52(7): 1524-1533.
[2] 秦静,郑德,裴毅强,吕永,苏庆鹏,王膺博. 基于PSO-GPR的发动机性能与排放预测方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1489-1498.
[3] 邢海燕,刘超,徐成,陈玉环,王松弘泽. 基于粒子群优化模糊C焊缝等级磁记忆定量识别模型[J]. 吉林大学学报(工学版), 2022, 52(3): 525-532.
[4] 罗巍,卢博,陈菲,马腾. 基于PSO-SVM及时序环节的数控刀架故障诊断方法[J]. 吉林大学学报(工学版), 2022, 52(2): 392-399.
[5] 杜常清,曹锡良,何彪,任卫群. 基于混合粒子群算法的双离合变速器参数优化设计[J]. 吉林大学学报(工学版), 2020, 50(5): 1556-1564.
[6] 马芳武,韩丽,吴量,李金杭,杨龙帆. 基于遗传与粒子群算法的隔振平台减振性能优化[J]. 吉林大学学报(工学版), 2020, 50(5): 1608-1616.
[7] 于向军,槐元辉,李学飞,王德武,俞安. 基于克里金和粒子群算法的装载机铲掘轨迹规划[J]. 吉林大学学报(工学版), 2020, 50(2): 437-444.
[8] 金顺福,郄修尘,武海星,霍占强. 基于新型休眠模式的云虚拟机分簇调度策略及性能优化[J]. 吉林大学学报(工学版), 2020, 50(1): 237-246.
[9] 王宏志,姜方达,周明月. 基于遗传粒子群优化算法的认知无线电系统功率分配[J]. 吉林大学学报(工学版), 2019, 49(4): 1363-1368.
[10] 刘元宁,刘帅,朱晓冬,霍光,丁通,张阔,姜雪,郭书君,张齐贤. 基于决策粒子群优化与稳定纹理的虹膜二次识别[J]. 吉林大学学报(工学版), 2019, 49(4): 1329-1338.
[11] 徐开,陈志刚,赵靖华,戴路,李峰. 基于粒子群算法的星敏感器布局设计[J]. 吉林大学学报(工学版), 2019, 49(3): 972-978.
[12] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[13] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[14] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[15] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!