吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1418-1426.doi: 10.13229/j.cnki.jdxbgxb.20210860

• 交通运输工程·土木工程 • 上一篇    

基于桥梁裂缝识别模型的桥梁裂缝病害识别方法

张振海1(),季坤1,党建武1,2   

  1. 1.兰州交通大学 自动化与电气工程学院,兰州 730070
    2.甘肃省人工智能与图形图像处理工程研究中心,兰州 730070
  • 收稿日期:2021-09-02 出版日期:2023-05-01 发布日期:2023-05-25
  • 作者简介:张振海(1983-),男,副教授,博士.研究方向:交通信息工程,控制与图像处理.E-mail:764411629@qq.com
  • 基金资助:
    甘肃省自然科学基金项目(18JR3RA124);甘肃省教育厅青年博士基金项目(2022QB-064);甘肃省优秀研究生“创新之星”项目(2022CXZX-614)

Crack identification method for bridge based on BCEM model

Zhen-hai ZHANG1(),Kun JI1,Jian-wu DANG1,2   

  1. 1.School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2.Gansu Province Artificial Intelligence and Graphics and Image Processing Engineering Research Center,Lanzhou 730070,China
  • Received:2021-09-02 Online:2023-05-01 Published:2023-05-25

摘要:

为实现高效、轻量化、无接触的桥梁裂缝病害识别,提出了一种基于桥梁裂缝识别模型(Bridge crack extraction model,BCEM)的桥梁裂缝识别网络。该网络将深度学习与传统图像处理方法相结合,首先,预处理裂缝图像,增强裂缝信息表达;之后,采用滑窗法将裂缝切分为面元图像,针对面元图像特性,采用改进的BC-MobileNet轻量化模型对裂缝面元进行分类;最后,识别误检与漏检面元,实现桥梁裂缝准确识别。通过与目标检测、模式识别等不同裂缝识别方式进行比较,结果表明:BCEM在各项实验指标上均有提升,证明了本文提出识别网络对桥梁裂缝识别的有效性。

关键词: 计算机应用, 深度学习, 裂缝检测, 图像处理, 卷积神经网络

Abstract:

To realize high-efficiency, light-weight, and non-contact bridge crack disease identification, a bridge crack identification network based on the (bridge crack extraction model,BCEM) is proposed. The network combines deep learning with traditional image processing methods. First, the crack image is preprocessed to enhance the expression of crack information. Then the sliding window method is used to divide the crack into patches. According to the characteristics of the patches, the improved lightweight model named BC-MobileNet is used to classify crack features. Finally, misdetected and undetected cracks are identified to achieve accurate identification of bridge cracks. Compared with different crack identification methods such as target detection and pattern recognition, the results show that the BCEM has improved in various experimental indicators, which proves the effectiveness of this network for bridge crack identification.

Key words: computer application, deep learning, crack detection, image processing, convolutional neural network

中图分类号: 

  • TP391.41

图1

数据集扩充示意图"

图2

兰州中山桥无人机裂缝采集"

图3

DW卷积结构示意图"

图4

BC-MobileNet网络结构图"

图5

漏检误检现象示意图"

图6

面元连接方式"

图7

映射过程"

图8

灰度直方图包络线对比"

图9

裂缝提取结果"

表1

预处理方法对BC-MobileNet模型识别算法的影响"

测试集面元总数预处理模型正确识别数准确率/%
50039879.6
500传统方法38977.8
500本文方法46392.6

图10

预处理对模型收敛的影响"

表2

各类模型对面元识别的影响"

主干网络测试集面元数面元规格/像素识别准确率/%识别召回率/%
VGG-1650016×1616.762.4
MobileNetV250016×1667.273.6
MobileNetV2-A5008×840.752.8
MobileNetV2-B50032×3276.883.0
MobileNetV2-C50016×1671.885.3
MobileNetV2-D50016×1675.081.8
BC-MobileNet50016×1692.694.1

表3

BCEM与目标检测模型对面元识别准确率的影响"

模型测试集面元数平均识别IoUAP识别速度/(s·面元-1模型大小/Mbit
BCEM5000.980.95551.76219.9
Faster-Rcnn5000.870.90731.152127
YoLoV35000.820.90190.08969

图11

各类算法模型对裂缝的提取结果"

表4

各类模型提取裂缝指标分析"

模 型测试集图片数pr/%re/%模型大小/Mbit
Otsu10015.716.3-
最大熵分割10039.752.4-
漫水填充1007.87.5-
FCN10072.275.239
U-Net10081.783.428
ANet-FSM2510088.4687.040
HDCB-Net2610091.4486.3564
BCEM10097.598.719.9
1 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97.
Editorial Department of China Journal of Highway and Transport. A summary of academic research on chinese bridge engineering·2021[J]. Journal of China Highway, 2021, 34(2): 1-97.
2 Song B, Wei N. Statistics properties of asphalt pavement images for cracks detection[J]. Journal of Information & Computational Science, 2013, 10(9): 2833-2843.
3 Zou Q, Zhang Z, Li Q Q, et al. Deepcrack: learning hierarchical convolutional features for crack detection[J]. IEEE Trans Image Processing, 2019, 28(3): 1498-1512.
4 肖明尧, 李雄飞, 张小利, 等.基于多尺度的区域生长的图像分割算法[J].吉林大学学报: 工学版, 2017, 47(5): 1591-1597.
Xiao Ming-yao, Li Xiong-fei, Zhang Xiao-li, et al. Image segmentation algorithm based on multi-scale region growth[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(5): 1591-1597.
5 Qu Z, Chen S Q, Liu Y Q, et al. Linear seam elimination of tunnel crack images based on statistical specific pixels ratio and adaptive fragmented segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21: 3599-3607.
6 谢志江, 吕波, 刘琴, 等.旋转不变性图像模板匹配快速算法[J].吉林大学学报: 工学版, 2013, 43(3): 711-717.
Xie Zhi-jiang, Bo LYU, Liu Qin, et al. A fast algorithm for image template matching with rotation invariance[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(3): 711-717.
7 Zhao B, Dai M, Li P, et al. Defect detection method for electric multiple units key components based on deep learning[J]. IEEE Access, 2020, 8: 136808-136818.
8 李良福, 马卫飞, 李丽, 等.基于深度学习的桥梁裂缝检测算法研究[J].自动化学报, 2019, 45(9): 1727-1742.
Li Liang-fu, Ma Wei-fei, Li Li, et al. Research on bridge crack detection algorithm based on deep learning[J]. Automatica Sinica, 2019, 45(9): 1727-1742.
9 Cha Y J, Choi W, Oral B. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378.
10 He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778.
11 Rahul K, Ankur G, Harkirat S A, et al. CBSN: comparative measures of normalization techniques for brain tumor segmentation using SRCNet[J]. Multimedia Tools and Applications, 2022, 81(10): 13203-13235.
12 曹锦纲, 杨国田, 杨锡运.基于注意力机制的深度学习路面裂缝检测[J].计算机辅助设计与图形学学报, 2020, 32(8): 1324-1333.
Cao Jin-gang, Yang Guo-tian, Yang Xi-yun. Deep learning pavement crack detection based on attention mechanism[J]. Journal of Computer Aided Design and Graphics, 2020, 32(8): 1324-1333.
13 黄宏伟, 李庆桐.基于深度学习的盾构隧道渗漏水病害图像识别[J].岩石力学与工程学报, 2017, 36(12): 2861-2871.
Huang Hong-wei, Li Qing-tong. Image recognition of water leakage in shield tunnels based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2861-2871.
14 Simonyan S, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. [2015-04-10].
15 Islam M M M, Kim JM. Vision-based autonomous crack detection of concrete structures using a fully convolutional encoder-decoder network[J]. Sensors(Basel), 2019(19): 19194251.
16 薛亚东, 李宜城.基于深度学习的盾构隧道衬砌病害识别方法[J].湖南大学学报: 自然科学版, 2018, 45(3): 100-109.
Xue Ya-dong. Li Yi-cheng. A method of disease recognition forshield tunnel lining based on deep learning[J]. Joumal of Hunan University(Natural Sciences), 2018, 45(3): 100-109.
17 Sandler M, Howard A, Zhu M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510-4520.
18 Redmon J, Farhadi A. YOLOv3: an incremental improvement[J/OL]. [2018-04-08].
19 蔡逢煌, 张岳鑫, 黄捷.基于YOLOv3与注意力机制的桥梁表面裂痕检测算法[J].模式识别与人工智能, 2020, 33(10): 926-933.
Cai Feng-huang, Zhang Yue-xin, Huang Jie. Bridge surface crack detection algorithm based on YOLOv3 and attention mechanism[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10): 926-933.
20 Saouma V E, Barton C C, Gamaleldin N A. Fractal characterization of fracture surfaces in concrete[J]. Engineering Fracture Mechanics, 1990, 35(1-3): 47-53.
21 Xu F Y, Jiang Q S. Dynamic obstacle surmounting analysis of a bilateral-wheeled cable-climbing robot for cable-stayed bridges[J]. The Industrial Robot, 2019, 46(3): 431-443.
22 李超飞.桥梁病害检测的无人机地面站软件设计与实现[D].西安: 长安大学电子与控制工程学院, 2020.
Li Chao-fei. Design and implementation of UAV ground station software for bridge disease detection [D]. Xi'an: School of Electronics and Control Engineering, Chang'an University, 2020.
23 Howard A G, Zhu M, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J/OL]. [2017-04-17].
24 Shi Y, Cui L M, Qi Z Q, et al. Automatic road crack detection using random structured forests[J]. IEEE Ttransactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445.
25 Billah U H, La H M, Tavakkoli A. Deep learning-based feature silencing for accurate concrete crack detection[J]. Sensors, 2020, 20(16): 20164403.
26 Jiang W B, Liu M, Peng Y N, et al. HDCB-Net: a neural network with the hybrid dilated convolution for pixel-level crack detection on concrete bridges[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5485-5494.
[1] 张则强,梁巍,谢梦柯,郑红斌. 混流双边拆卸线平衡问题的精英差分进化算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1297-1304.
[2] 于鹏,朴燕. 基于多尺度特征的行人重识别属性提取新方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1155-1162.
[3] 吴飞,农皓业,马晨浩. 基于粒子群优化算法长短时记忆模型的刀具磨损预测方法[J]. 吉林大学学报(工学版), 2023, 53(4): 989-997.
[4] 姜宇,潘家铮,陈何淮,符凌智,齐红. 基于分割方法的繁体中文报纸文本检测[J]. 吉林大学学报(工学版), 2023, 53(4): 1146-1154.
[5] 何科,丁海涛,赖宣淇,许男,郭孔辉. 基于Transformer的轮式里程计误差预测模型[J]. 吉林大学学报(工学版), 2023, 53(3): 653-662.
[6] 吴振宇,刘小飞,王义普. 基于DKRRT*-APF算法的无人系统轨迹规划[J]. 吉林大学学报(工学版), 2023, 53(3): 781-791.
[7] 陶博,颜伏伍,尹智帅,武冬梅. 基于高精度地图增强的三维目标检测算法[J]. 吉林大学学报(工学版), 2023, 53(3): 802-809.
[8] 薛珊,张亚亮,吕琼莹,曹国华. 复杂背景下的反无人机系统目标检测算法[J]. 吉林大学学报(工学版), 2023, 53(3): 891-901.
[9] 潘弘洋,刘昭,杨波,孙庚,刘衍珩. 基于新一代通信技术的无人机系统群体智能方法综述[J]. 吉林大学学报(工学版), 2023, 53(3): 629-642.
[10] 何颖,樊俊松,王巍,孙庚,刘衍珩. 无人机空地安全通信与航迹规划的多目标联合优化方法[J]. 吉林大学学报(工学版), 2023, 53(3): 913-922.
[11] 郭鹏,赵文超,雷坤. 基于改进Jaya算法的双资源约束柔性作业车间调度[J]. 吉林大学学报(工学版), 2023, 53(2): 480-487.
[12] 刘近贞,高国辉,熊慧. 用于脑组织分割的多尺度注意网络[J]. 吉林大学学报(工学版), 2023, 53(2): 576-583.
[13] 祁贤雨,王巍,王琳,赵玉飞,董彦鹏. 基于物体语义栅格地图的语义拓扑地图构建方法[J]. 吉林大学学报(工学版), 2023, 53(2): 569-575.
[14] 时小虎,吴佳琦,吴春国,程石,翁小辉,常志勇. 基于残差网络的弯道增强车道线检测方法[J]. 吉林大学学报(工学版), 2023, 53(2): 584-592.
[15] 高金武,贾志桓,王向阳,邢浩. 基于PSO-LSTM的质子交换膜燃料电池退化趋势预测[J]. 吉林大学学报(工学版), 2022, 52(9): 2192-2202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!