吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1418-1426.doi: 10.13229/j.cnki.jdxbgxb.20210860
• 交通运输工程·土木工程 • 上一篇
Zhen-hai ZHANG1(),Kun JI1,Jian-wu DANG1,2
摘要:
为实现高效、轻量化、无接触的桥梁裂缝病害识别,提出了一种基于桥梁裂缝识别模型(Bridge crack extraction model,BCEM)的桥梁裂缝识别网络。该网络将深度学习与传统图像处理方法相结合,首先,预处理裂缝图像,增强裂缝信息表达;之后,采用滑窗法将裂缝切分为面元图像,针对面元图像特性,采用改进的BC-MobileNet轻量化模型对裂缝面元进行分类;最后,识别误检与漏检面元,实现桥梁裂缝准确识别。通过与目标检测、模式识别等不同裂缝识别方式进行比较,结果表明:BCEM在各项实验指标上均有提升,证明了本文提出识别网络对桥梁裂缝识别的有效性。
中图分类号:
1 | 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97. |
Editorial Department of China Journal of Highway and Transport. A summary of academic research on chinese bridge engineering·2021[J]. Journal of China Highway, 2021, 34(2): 1-97. | |
2 | Song B, Wei N. Statistics properties of asphalt pavement images for cracks detection[J]. Journal of Information & Computational Science, 2013, 10(9): 2833-2843. |
3 | Zou Q, Zhang Z, Li Q Q, et al. Deepcrack: learning hierarchical convolutional features for crack detection[J]. IEEE Trans Image Processing, 2019, 28(3): 1498-1512. |
4 | 肖明尧, 李雄飞, 张小利, 等.基于多尺度的区域生长的图像分割算法[J].吉林大学学报: 工学版, 2017, 47(5): 1591-1597. |
Xiao Ming-yao, Li Xiong-fei, Zhang Xiao-li, et al. Image segmentation algorithm based on multi-scale region growth[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(5): 1591-1597. | |
5 | Qu Z, Chen S Q, Liu Y Q, et al. Linear seam elimination of tunnel crack images based on statistical specific pixels ratio and adaptive fragmented segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21: 3599-3607. |
6 | 谢志江, 吕波, 刘琴, 等.旋转不变性图像模板匹配快速算法[J].吉林大学学报: 工学版, 2013, 43(3): 711-717. |
Xie Zhi-jiang, Bo LYU, Liu Qin, et al. A fast algorithm for image template matching with rotation invariance[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(3): 711-717. | |
7 | Zhao B, Dai M, Li P, et al. Defect detection method for electric multiple units key components based on deep learning[J]. IEEE Access, 2020, 8: 136808-136818. |
8 | 李良福, 马卫飞, 李丽, 等.基于深度学习的桥梁裂缝检测算法研究[J].自动化学报, 2019, 45(9): 1727-1742. |
Li Liang-fu, Ma Wei-fei, Li Li, et al. Research on bridge crack detection algorithm based on deep learning[J]. Automatica Sinica, 2019, 45(9): 1727-1742. | |
9 | Cha Y J, Choi W, Oral B. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378. |
10 | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778. |
11 | Rahul K, Ankur G, Harkirat S A, et al. CBSN: comparative measures of normalization techniques for brain tumor segmentation using SRCNet[J]. Multimedia Tools and Applications, 2022, 81(10): 13203-13235. |
12 | 曹锦纲, 杨国田, 杨锡运.基于注意力机制的深度学习路面裂缝检测[J].计算机辅助设计与图形学学报, 2020, 32(8): 1324-1333. |
Cao Jin-gang, Yang Guo-tian, Yang Xi-yun. Deep learning pavement crack detection based on attention mechanism[J]. Journal of Computer Aided Design and Graphics, 2020, 32(8): 1324-1333. | |
13 | 黄宏伟, 李庆桐.基于深度学习的盾构隧道渗漏水病害图像识别[J].岩石力学与工程学报, 2017, 36(12): 2861-2871. |
Huang Hong-wei, Li Qing-tong. Image recognition of water leakage in shield tunnels based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2861-2871. | |
14 | Simonyan S, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. [2015-04-10]. |
15 | Islam M M M, Kim JM. Vision-based autonomous crack detection of concrete structures using a fully convolutional encoder-decoder network[J]. Sensors(Basel), 2019(19): 19194251. |
16 | 薛亚东, 李宜城.基于深度学习的盾构隧道衬砌病害识别方法[J].湖南大学学报: 自然科学版, 2018, 45(3): 100-109. |
Xue Ya-dong. Li Yi-cheng. A method of disease recognition forshield tunnel lining based on deep learning[J]. Joumal of Hunan University(Natural Sciences), 2018, 45(3): 100-109. | |
17 | Sandler M, Howard A, Zhu M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510-4520. |
18 | Redmon J, Farhadi A. YOLOv3: an incremental improvement[J/OL]. [2018-04-08]. |
19 | 蔡逢煌, 张岳鑫, 黄捷.基于YOLOv3与注意力机制的桥梁表面裂痕检测算法[J].模式识别与人工智能, 2020, 33(10): 926-933. |
Cai Feng-huang, Zhang Yue-xin, Huang Jie. Bridge surface crack detection algorithm based on YOLOv3 and attention mechanism[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10): 926-933. | |
20 | Saouma V E, Barton C C, Gamaleldin N A. Fractal characterization of fracture surfaces in concrete[J]. Engineering Fracture Mechanics, 1990, 35(1-3): 47-53. |
21 | Xu F Y, Jiang Q S. Dynamic obstacle surmounting analysis of a bilateral-wheeled cable-climbing robot for cable-stayed bridges[J]. The Industrial Robot, 2019, 46(3): 431-443. |
22 | 李超飞.桥梁病害检测的无人机地面站软件设计与实现[D].西安: 长安大学电子与控制工程学院, 2020. |
Li Chao-fei. Design and implementation of UAV ground station software for bridge disease detection [D]. Xi'an: School of Electronics and Control Engineering, Chang'an University, 2020. | |
23 | Howard A G, Zhu M, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J/OL]. [2017-04-17]. |
24 | Shi Y, Cui L M, Qi Z Q, et al. Automatic road crack detection using random structured forests[J]. IEEE Ttransactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445. |
25 | Billah U H, La H M, Tavakkoli A. Deep learning-based feature silencing for accurate concrete crack detection[J]. Sensors, 2020, 20(16): 20164403. |
26 | Jiang W B, Liu M, Peng Y N, et al. HDCB-Net: a neural network with the hybrid dilated convolution for pixel-level crack detection on concrete bridges[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5485-5494. |
[1] | 张则强,梁巍,谢梦柯,郑红斌. 混流双边拆卸线平衡问题的精英差分进化算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1297-1304. |
[2] | 于鹏,朴燕. 基于多尺度特征的行人重识别属性提取新方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1155-1162. |
[3] | 吴飞,农皓业,马晨浩. 基于粒子群优化算法⁃长短时记忆模型的刀具磨损预测方法[J]. 吉林大学学报(工学版), 2023, 53(4): 989-997. |
[4] | 姜宇,潘家铮,陈何淮,符凌智,齐红. 基于分割方法的繁体中文报纸文本检测[J]. 吉林大学学报(工学版), 2023, 53(4): 1146-1154. |
[5] | 何科,丁海涛,赖宣淇,许男,郭孔辉. 基于Transformer的轮式里程计误差预测模型[J]. 吉林大学学报(工学版), 2023, 53(3): 653-662. |
[6] | 吴振宇,刘小飞,王义普. 基于DKRRT*-APF算法的无人系统轨迹规划[J]. 吉林大学学报(工学版), 2023, 53(3): 781-791. |
[7] | 陶博,颜伏伍,尹智帅,武冬梅. 基于高精度地图增强的三维目标检测算法[J]. 吉林大学学报(工学版), 2023, 53(3): 802-809. |
[8] | 薛珊,张亚亮,吕琼莹,曹国华. 复杂背景下的反无人机系统目标检测算法[J]. 吉林大学学报(工学版), 2023, 53(3): 891-901. |
[9] | 潘弘洋,刘昭,杨波,孙庚,刘衍珩. 基于新一代通信技术的无人机系统群体智能方法综述[J]. 吉林大学学报(工学版), 2023, 53(3): 629-642. |
[10] | 何颖,樊俊松,王巍,孙庚,刘衍珩. 无人机空地安全通信与航迹规划的多目标联合优化方法[J]. 吉林大学学报(工学版), 2023, 53(3): 913-922. |
[11] | 郭鹏,赵文超,雷坤. 基于改进Jaya算法的双资源约束柔性作业车间调度[J]. 吉林大学学报(工学版), 2023, 53(2): 480-487. |
[12] | 刘近贞,高国辉,熊慧. 用于脑组织分割的多尺度注意网络[J]. 吉林大学学报(工学版), 2023, 53(2): 576-583. |
[13] | 祁贤雨,王巍,王琳,赵玉飞,董彦鹏. 基于物体语义栅格地图的语义拓扑地图构建方法[J]. 吉林大学学报(工学版), 2023, 53(2): 569-575. |
[14] | 时小虎,吴佳琦,吴春国,程石,翁小辉,常志勇. 基于残差网络的弯道增强车道线检测方法[J]. 吉林大学学报(工学版), 2023, 53(2): 584-592. |
[15] | 高金武,贾志桓,王向阳,邢浩. 基于PSO-LSTM的质子交换膜燃料电池退化趋势预测[J]. 吉林大学学报(工学版), 2022, 52(9): 2192-2202. |
|