吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (1): 18-30.doi: 10.13229/j.cnki.jdxbgxb20220600

• 综述 • 上一篇    下一篇

碳纤维增强热塑性复合材料研究进展

邓海1,2,3(),王超3,杨京浩4,王利忠3,王明辉4,李志刚4()   

  1. 1.中南大学 交通运输工程学院,长沙 410075
    2.中南大学 轨道交通安全教育部重点实验室,长沙 410075
    3.中车长春轨道客车股份有限公司 国家轨道客车工程研究中心,长春 130062
    4.吉林大学 材料科学与工程学院,长春 130022
  • 收稿日期:2022-05-18 出版日期:2023-01-01 发布日期:2023-07-23
  • 通讯作者: 李志刚 E-mail:denghai@cccar.com.cn;lzg@jlu.edu.cn
  • 作者简介:邓海(1973-),男,教授级高级工程师. 研究方向:轨道交通,复合材料应用. E-mail:denghai@cccar.com.cn
  • 基金资助:
    国家重点研发计划项目(2020YFF0304103);吉林省重大科技专项项目(20210301004GX)

Research progress of carbon fiber reinforced thermoplastic composites

Hai DENG1,2,3(),Chao WANG3,Jing-hao YANG4,Li-zhong WANG3,Ming-hui WANG4,Zhi-gang LI4()   

  1. 1.Key Laboratory of Traffic Safety on Track,Ministry of Education,Central South University,Changsha 410075
    2.School of Traffic & Transportation Engineering,Central South University,Changsha 410075,China
    3.National Railway Vehicle Engineering Research Center,CRRC Changchun Railway Vehicles Co. ,Ltd. ,Changchun 130062,China
    4.College of Material Science and Engineering,Jilin University,Changchun 130022,China
  • Received:2022-05-18 Online:2023-01-01 Published:2023-07-23
  • Contact: Zhi-gang LI E-mail:denghai@cccar.com.cn;lzg@jlu.edu.cn

摘要:

系统介绍了碳纤维增强热塑性复合材料的研究进展,包括界面改性(物理改性和化学改性)、结构设计(仿生结构、三维编织结构和机械结构)和成型工艺(树脂传递模塑成型、自动铺放成型、长纤维增强热塑性树脂成型工艺、热压成型和3D打印成型)。最后,介绍了碳纤维增强热塑性复合材料在运载行业的应用和发展情况,并对其未来发展情况进行了展望。

关键词: 碳纤维, 热塑性树脂, 界面改性, 结构设计, 成型工艺

Abstract:

The research progress of carbon fiber-reinforced thermoplastic composites was introduced systematically, including interface modification (physical modification and chemical modification), structural design (biomimetic structure, three-dimensional woven structure and mechanical structure) and molding process (resin transfer molding, automated fiber placement, long fiber reinforced thermoplastics,hot press and 3D printing). Finally, the application and development of carbon fiber reinforced thermoplastic composites was introduced in the transportation industry, and looks forward to the future development.

Key words: carbon fibers, thermoplastic resin, interface modification, structural design, processing technology

中图分类号: 

  • TB332

图1

不同等离子体扫描速率下CFs表面的SEM图像[7]"

图2

使用苯氧基反应性树脂改善 pCF 和 PA6 之间的表面的示意图[14]"

图3

螳螂虾螯棒及其结构示意图[20]"

图4

三维编织技术[22]"

图5

碳纤维与热塑性长丝Z向针刺[23]"

图6

圆顶内芯夹芯板[25]"

图7

不同的表层和内芯连接方法[26]"

图8

RTM成型工艺[36]"

图9

自动铺放技术[40]"

图10

LFT成型工艺示意图[42]"

图11

模压成型工艺[36]"

图12

层合板制造工艺[47]"

图13

AM预成型件制造高性能模制复合材料的示意图[54]"

图14

碳纤维增强树脂基复合材料对汽车的减重[59]"

1 卡里斯特, 来斯威什. 材料科学与工程基础[M].郭福等译. 北京:化学工业出版社,2015.
2 王善元, 张汝光. 纤维增强复合材料[M]. 上海:中国纺织大学出版社,1998.
3 Wang Q, Ning H, Vaidya U, et al. Fiber content measurement for carbon fiber-reinforced thermoplastic composites using carbonization-in-nitrogen method[J]. Journal of Thermoplastic Composite Materials, 2018,31(1): 79-90.
4 Alshammari B A, Alsuhybani M S, Almushaikeh A M, et al. Comprehensive review of the properties and modifications of carbon fiber-reinforced thermoplastic composites[J]. Polymers (Basel), 2021, 13(15):2474.
5 Vinodhini J, Sudheendra K, Balachandran M, et al. Influence of argon plasma treatment on carbon fibre reinforced high performance thermoplastic composite[J]. High Performance Polymers, 2020, 33(3): 285-294.
6 Lu C, Qiu S, Lu X, et al. Enhancing the interfacial strength of carbon fiber/poly(ether ether ketone) hybrid composites by plasma treatments[J]. Polymers (Basel), 2019, 11(5):753.
7 Cho B G, Hwang S H, Park M, et al. The effects of plasma surface treatment on the mechanical properties of polycarbonate/carbon nanotube/carbon fiber composites[J]. Composites Part B: Engineering, 2019, 160: 436-445.
8 Irisawa T, Shibata M, Yamamoto T, et al. Effects of carbon nanofibers on carbon fiber reinforced thermoplastics made with in situ polymerizable polyamide 6[J]. Composites Part A: Applied Science and Manufacturing, 2020, 138: No.106051.
9 Cheon J, Kim M. Impact resistance and interlaminar shear strength enhancement of carbon fiber reinforced thermoplastic composites by introducing MWCNT-anchored carbon fiber[J]. Composites Part B: Engineering, 2021, 217: 108872.
10 Chen J, Wang K, Zhao Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface[J]. Composites Science and Technology, 2018, 154: 175-186.
11 Liu L, Jia C, He J, et al. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites[J]. Composites Science and Technology, 2015, 121: 56-72.
12 Hu J, Li F, Wang B, et al. A two-step combination strategy for significantly enhancing the interfacial adhesion of CF/PPS composites: the liquid-phase oxidation followed by grafting of silane coupling agent[J]. Composites Part B: Engineering, 2020, 191:No.107966.
13 Zhang M, Qian X, Ma K, et al. Enhanced interfacial properties of high-modulus carbon fiber reinforced pekk composites by a two-step surface treatment: electrochemical oxidation followed by thermoplastic sizing [J]. Applied Composite Materials, 2022, 29: 745-764.
14 Yi J, Lee W, Seong D, et al. Effect of phenoxy-based coating resin for reinforcing pitch carbon fibers on the interlaminar shear strength of PA6 composites [J]. Composites Part A: Applied Science and Manufacturing, 2016, 87: 212-219.
15 Kim S, Park T, Um M, et al. Effect of caprolactam modified phenoxy-based sizing material on reactive process of carbon fiber-reinforced thermoplastic polyamide-6 [J]. Composites Part A: Applied Science and Manufacturing, 2020, 139: No.106104.
16 Yuan C, Li D, Yuan X, et al. Preparation of semi-aliphatic polyimide for organic-solvent-free sizing agent in CF/PEEK composites[J]. Composites Science and Technology, 2021, 201: No.108490.
17 张雪, 刘媛, 杨斌, 等. 碳纤维表面改性对复合材料性能的影响[J].功能高分子学报,2017, 30(4):444-449.
Zhang Xue, Liu Yuan, Yang Bin, et al. Effect of carbon fiber surface modification on properties of composites[J]. Journal of Functional Polymers, 2017, 30(4):444-449.
18 Yamamoto T, Ota Y. Creating a laminated carbon fiber-reinforced thermoplastic using polypropylene and nylon with a polypropylene colloid[J]. Composite Structures, 2021, 255:No.113038.
19 Liang Y H, Liu C, Zhao Q, et al. Bionic design and 3D printing of continuous carbon fiber-reinforced polylactic acid composite with barbicel structure of eagle-owl feather[J]. Materials, 2021, 14(13):3618.
20 Han Q G, Qin H L, Liu Z H, et al. Experimental investigation on impact and bending properties of a novel dactyl-inspired sandwich honeycomb with carbon fiber[J]. Construction and Building Materials, 2020, 253: No.119161.
21 Qiu B W, Ni L, Zhang X Q, et al. Bio-inspired barb structure designed on the surface of carbon fibers to enhance the interfacial properties of composites in multiple scales[J]. Materials Chemistry Frontiers, 2021, 5(15): 5769-5779.
22 Qi Y, Gu B, Sun B, et al. Full-field strain and temperature evolution of electroactive three-dimensional braided thermoplastic shape memory composites[J]. Composites Science and Technology, 2022,219:No.109250.
23 Loh T W, Ladani R B, Ravindran A, et al. Z-pinned composites with combined delamination toughness and delamination self-repair properties[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: No.106566.
24 许小海. 三维编织碳纤维增强聚醚醚酮复合材料的制备及性能研究[D]. 天津:天津大学材料科学与工程学院, 2012.
Xu Xiao-hai. Study on preparation and properties of 3-D braided carbon fiber reinforced polyether-ether-ketone composites[D]. Tianjin: School of Materials Science and Engineering, Tianjin University, 2012.
25 Zhang J, Yanagimoto J. Design and fabrication of formable CFRTP core sandwich sheets[J]. CIRP Annals, 2019, 68(1): 281-284.
26 Hu J, Liu A, Zhu S, et al. Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores[J]. Composite Structures, 2020, 251:No.112659.
27 Hu J, Zhu S, Wang B, et al. Fabrication and compression properties of continuous carbon fiber reinforced polyether ether ketone thermoplastic composite sandwich structures with lattice cores [J]. Journal of Sandwich Structures & Materials, 2020, 23(6): 2422-2442.
28 Grünewald J, Parlevliet P P, Matschinski A, et al. Mechanical performance of CF/PEEK-PEI foam core sandwich structures[J]. Journal of Sandwich Structures & Materials, 2017, 21(8): 2680-2699.
29 Santos A, Monticeli F, Ornaghi H, et al. Porosity characterization and respective influence on short-beam strength of advanced composite processed by resin transfer molding and compression molding[J]. Polymers and Polymer Composites, 2021, 29(8): 1353-1362.
30 陶积柏, 王绍凯, 李敏, 等. 三维夹芯层连织物复合材料真空辅助成型工艺影响因素[J].复合材料学报,2010(4):81-86.
Tao Ji-bai, Wang Sao-kai, Li Min, et al. Influencing factors of vacuum assisted resin transfer molding process for 3D spacer fabric composites[J]. Acta Materiae Compositae Sinica, 2010(4):81-86.
31 苏峰, 于洋, 于柏峰. 真空辅助树脂灌注工艺的创新性改进[J]. 纤维复合材料,2010(1):18-20.
Su Feng, Yu Yang, Yu Bo-feng. Innovative improvement of vacuum assisted resin infusion process (VARI) [J]. Fiber Composites,2010(1):18-20.
32 潘利剑, 刘卫平, 陈萍, 等. 真空辅助成型工艺中预成型体的厚度变化与过流控制[J].复合材料学报,2012(29):244-248.
Pan Li-jian, Li Wei-ping, Chen Ping, et al. Change in preform thickness throughout the vacuum assisted resin infusion process and the post-filling control[J]. Acta Materiae Compositae Sinica, 2012(29):244-248.
33 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J].中国材料进展, 2009, 28(6):2-12.
Chen Xiang-bao, Zhang Bao-yan, Xing Li-ying. Application and development of advanced polymer matrix composites[J]. Materials China, 2009,28(6):2-12.
34 Choi C W, Jin J W, Lee H, et al. Optimal polymerization conditions in thermoplastic-resin transfer molding process for mechanical properties of carbon fiber-reinforced PA6 composites using the response surface method[J]. Fibers and Polymers, 2019, 20(5): 1021-1028.
35 Kim B J, Cha S H, Park Y B. Ultra-high-speed processing of nanomaterial-reinforced woven carbon fiber/polyamide 6 composites using reactive thermoplastic resin transfer molding[J]. Composites Part B: Engineering, 2018, 143: 36-46.
36 Sun Z, Xiao J, Tao L, et al. Preparation of high-performance carbon fiber-reinforced epoxy composites by compression resin transfer molding [J]. Materials, 2019,12(1):No.13.
37 Smith R, Qureshi Z, Scaife R, et al. Limitations of processing carbon fibre reinforced plastic/polymer material using automated fibre placement technology [J]. Journal of Reinforced Plastics and Composites, 2016,35(21):1527-1542.
38 何天白. 碳纤维复合材料轻量化技术[M]. 北京:科学出版社,2015.
39 Sebaey T A, Bouhrara M, O'dowd N. Fibre alignment and void assessment in thermoplastic carbon fibre reinforced polymers manufactured by automated tape placement[J]. Polymers (Basel), 2021, 13(3):473.
40 Chen J, Fu K, Li Y. Understanding processing parameter effects for carbon fibre reinforced thermoplastic composites manufactured by laser-assisted automated fibre placement (AFP) [J].Composites Part A: Applied Science and Manufacturing, 2021,140:No.106160.
41 Jin Z, Han Z, Liu X, et al. The interlaminar performance of carbon fiber reinforced polyetheretherketone composites reinforced by doped buckypaper[J]. Materials Letters, 2022, 321: No.132426.
42 Bondy M, Rodgers W, Altenhof W. Tensile fatigue characterization of polyamide 66/carbon fiber direct/in-line compounded long fiber thermoplastic composites[J]. Composites Part B-Engineering, 2019,173:No.106984.
43 Bondy M, Altenhof W. Experimental characterisation of the mechanical properties of a carbon fibre/PA66 LFT automotive seatback under quasi-static and impact loading[J]. International Journal of Crashworthiness, 2019, 25(4): 1-20.
44 Lin M C, Lin J H, Bao L. Applying TPU blends and composite carbon fibers to flexible electromagnetic-shielding fabrics: long-fiber-reinforced thermoplastics technique[J]. Composites Part A: Applied Science and Manufacturing, 2020, 138: No.106022.
45 Wan Y, Suganuma H, Takahashi J. Effects of fabrication processes and tape thickness on tensile properties of chopped carbon fiber tape reinforced thermoplastics[J]. Composites Communications, 2020, 22: No.100434.
46 Wan Y, Takahashi J. Tensile and compressive properties of chopped carbon fiber tapes reinforced thermoplastics with different fiber lengths and molding pressures[J]. Composites Part A: Applied Science and Manufacturing, 2016, 87: 271-281.
47 Barnett P R, Cook Z A, Hulett B M, et al. Influence of processing parameters on permeability and infiltration of compression molded discontinuous carbon fiber organosheet composites[J]. Composites Part A: Applied Science and Manufacturing, 2022, 152:No.106682.
48 Song Y, Gandhi U, Sekito T, et al. CAE method for compression molding of carbon fiber-reinforced thermoplastic composite using bulk materials[J]. Composites Part A: Applied Science and Manufacturing, 2018, 114: 388-397.
49 Yin H, Peng X, Du T, et al. Forming of thermoplastic plain woven carbon composites: An experimental investigation[J]. Journal of Thermoplastic Composite Materials, 2013, 28(5): 730-742.
50 Tümer E H, Erbil H Y. Extrusion-based 3D printing applications of PLA composites: a review[J]. Coatings, 2021, 11(4):No.390.
51 Dickson A N, Abourayana H M, Dowling D P. 3D printing of fibre-reinforced thermoplastic composites using fused filament fabrication―a review [J].Polymers, 2020, 12(10): 2188.
52 田小永, 刘腾飞, 杨春成, 等. 高性能纤维增强树脂基复合材料3D打印及其应用探索[J]. 航空制造技术,2016(15):26-31.
Tian Xiao-yong, Liu Teng-fei, Yang Chun-cheng, et al. 3D printing of high-performance fiber-reinforced resin matrix composites and its application exploration[J]. Aeronautical Manufacturing Technology, 2016(15):26-31.
53 Ning F, Cong W, Qiu J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling [J]. Composites Part B:Engineering, 2015, 80: 369-378.
54 Kumar V, Alwekar S P, Kunc V, et al. High-performance molded composites using additively manufactured preforms with controlled fiber and pore morphology[J]. Additive Manufacturing, 2021, 37:No.101733.
55 Ye W, Lin G, Wu W, et al. Separated 3D printing of continuous carbon fiber reinforced thermoplastic polyimide[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 457-464.
56 李志刚, 杨京浩, 刘雪强, 等. 一种连续纤维编织体增强纤维复合材料 3D打印方法[P]. 中国: CN114248437A,2021-12-06.
57 Das T K, Ghosh P, Das N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review [J]. Advanced Composites and Hybrid Materials, 2019, 2(2): 214-233.
58 曹维宇, 杨学萍, 张藕生. 我国高性能高分子复合材料发展现状与展望[J]. 中国工程科学,2020, 22 (5):112-120.
Cao Wei-yu, Yang Xue-ping, Zhang Ou-sheng. Development and prospect of high performance polymer composites in China[J]. Strategic Study of CAE,2020,22(5):112-120.
59 Wan Y, Takahashi J. Development of carbon fiber-reinforced thermoplastics for mass-produced automotive applications in Japan[J]. Journal of Composites Science, 2021, 5(3): No.86.
60 friedrich K. Carbon fiber reinforced thermoplastic composites for future automotive applications[J]. AIP Conference Proceedings, 2016, 1736(1): No.020001.
61 巴斯夫. 巴斯夫推出滑动摩擦性能优越的工程塑料[DB/OL]. [2020-12-10]. .
[1] 金敬福,董新桔,贾志成,王康,贺连彬,邹猛,齐迎春. 板簧式弹性金属车轮胎面弹片结构优化[J]. 吉林大学学报(工学版), 2023, 53(4): 964-972.
[2] 庄蔚敏,陈沈,吴迪. 碳纤维增强复合材料包裹强化形式对钢管横向冲击性能的影响[J]. 吉林大学学报(工学版), 2022, 52(4): 819-828.
[3] 谷拴成,聂红宾. 极温冻融-荷载作用下碳纤维复合材料修复试件损伤分析[J]. 吉林大学学报(工学版), 2021, 51(6): 2108-2120.
[4] 于征磊,信仁龙,陈立新,朱奕凝,张志辉,曹青,金敬福,赵杰亮. 仿蜂窝防护结构的承载特性[J]. 吉林大学学报(工学版), 2021, 51(3): 1140-1145.
[5] 慕文龙,那景新,谭伟,王广彬,申浩,栾建泽. 基于FTIR分析的CFRP-铝合金粘接接头剩余强度预测[J]. 吉林大学学报(工学版), 2021, 51(1): 139-146.
[6] 万世成,黄侨,关健,郭赵元. 预应力碳纤维板加固钢⁃混凝土组合连续梁负弯矩区试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1114-1123.
[7] 胡志清, 郑会会, 徐亚男, 张春玲, 党停停. 表面微沟槽对Al/CFRP胶结性能的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[8] 张君媛, 纪梦雪, 王楠, 叶威. 汽车正面25%重叠率碰撞车身前端结构设计[J]. 吉林大学学报(工学版), 2018, 48(1): 57-64.
[9] 于天来, 刘兴国, 姚爽, 穆罕默德马苏. 碳纤维筋体外预应力加固钢筋混凝土梁的疲劳性能[J]. 吉林大学学报(工学版), 2016, 46(6): 1867-1873.
[10] 郭学东, 马立军, 张云龙. 集中力作用下考虑剪切滑移效应的双层结合面组合梁解析解[J]. 吉林大学学报(工学版), 2016, 46(2): 432-438.
[11] 刘坤, 赵建琛, 李超, 闫鹏飞, 韩宣. 基于Hyperworks的下肢康复训练系统机械结构设计与优化[J]. 吉林大学学报(工学版), 2015, 45(5): 1474-1480.
[12] 何仁, 王晶, 胡东海. 永磁式缓速器的制动力矩分级结构设计[J]. 吉林大学学报(工学版), 2015, 45(4): 1056-1062.
[13] 王庆年, 刘松山, 王伟华, 魏昊. 滚珠丝杠式馈能型减振器的结构设计及参数匹配[J]. , 2012, 42(05): 1100-1106.
[14] 关庆丰, 万明珍, 邹阳, 蔡杰, 陈康敏. 碳纤维增强摩擦材料的摩擦表面层 [J]. , 2012, (03): 672-676.
[15] 代汉达, 曲建俊, 庄乾兴. 模压工艺对CF+G/PEEK复合材料力学性能的影响[J]. 吉林大学学报(工学版), 2010, 40(02): 457-0460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!