吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (8): 2263-2271.doi: 10.13229/j.cnki.jdxbgxb.20201097

• 材料科学与工程 • 上一篇    

搅拌摩擦加工参数对镁合金表面改性层的影响

朱先勇1,2(),谢良稳1,樊跃香1,姜城1,孙炜佳1,王鹏1,肖雄1   

  1. 1.吉林大学 机械与航空航天工程学院,长春 130022
    2.吉林大学 重庆研究院,重庆 401120
  • 收稿日期:2020-09-11 出版日期:2023-08-01 发布日期:2023-08-21
  • 作者简介:朱先勇(1968-),男,教授,博士.研究方向:金属基复合材料.E-mail:zhuxy@jlu.edu.cn
  • 基金资助:
    吉林省发展和改革委员会项目(2021C038-4);吉林省科技发展计划项目(20210204143YY);长春市科技发展计划项目(21ZY25);吉林大学盐城智能终端产业研究院项目(JDYCYJY2021-15);吉林大学研究生创新基金项目(101832020CX116);吉林大学重庆研究院项目(CQRIJLU2021CY-GG018)

Effect of friction stir processing parameters on the surface modification layer of magnesium alloy

Xian-yong ZHU1,2(),Liang-wen XIE1,Yue-xiang FAN1,Cheng JIANG1,Wei-jia SUN1,Peng WANG1,Xiong XIAO1   

  1. 1.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    2.Chongqing Research Institute,Jilin University,Chongqing 401120,China
  • Received:2020-09-11 Online:2023-08-01 Published:2023-08-21

摘要:

为改善镁合金表面的微观组织和力学性能,利用搅拌摩擦加工技术对Mg-3.4Al-0.8Zn-0.4Sn镁合金进行了表面改性。采用无针搅拌头,分别设置不同行进速度和旋转速度,通过分析热循环过程、观察表面改性层宏观形貌、进行微观组织表征以及显微硬度测量,研究了工艺参数对表面改性层的影响规律。研究结果表明:表面改性区可分为搅拌层、旋转流动层、过渡层以及热机械影响层;随着行进速度增加,热循环时间缩短且峰值温度降低,表面改性层的厚度减小,平均晶粒尺寸减小,显微硬度增大;随着旋转速度的增加,加工区域峰值温度升高,表面改性层的厚度增大,平均晶粒尺寸增大,显微硬度减小;各工艺参数下获得的改性层相比于母材晶粒明显细化,硬度有所增大。

关键词: 材料合成与加工工艺, 镁合金, 搅拌摩擦加工, 表面改性

Abstract:

In order to improve the microstructure and mechanical properties on surface of magnesium alloys, the surface modification of Mg-3.4Al-0.8Zn-0.4Sn magnesium alloy was carried out by friction stir processing. By using a pin-less tool, setting a series of travel speeds and rotation speeds, analyzing the thermal cycle process, observing the macroscopic morphology of the surface modification zone, characterizing microstructure and measuring microhardness, the influence of process parameters on the surface modification layer was studied. The results show that, the surface modification zone can be divided into four layers including stir layer, rotation flow layer, transition layer and themo-mechanical affected layer. As the travel speed increases, the time and the peak temperature of the thermal cycle, the thickness of the surface modification layer and the average grain size decrease, while the microhardness increases. By contrast, as the rotation speed increases, the peak temperature of the thermal cycle, the thickness of the surface modification layer and the average grain size increase, while the microhardness decreases. The modification layer obtained at each parameter showed significant grain refinement and microhardness increment compared to the base material.

Key words: materials synthesis and processing technology, magnesium alloy, friction stir processing, surface modification

中图分类号: 

  • TG178

图1

搅拌摩擦加工设备和搅拌头"

图2

测温装置示意图"

图3

不同搅拌摩擦加工参数下的热循环曲线"

图4

不同工艺参数下改性表层宏观形貌"

图5

不同工艺参数下改性表层横截面宏观结构"

图6

表面改性层厚度随工艺参数变化的函数拟合曲线"

图7

典型20 mm/min、1500 r/min工艺参数下表面改性层结构划分示意图和各分区光镜图"

图8

典型20 mm/min、1500 r/min工艺参数下各层的晶粒大小分布"

图9

不同工艺参数下表面改性层过渡区域的微观组织"

图10

各分区平均晶粒尺寸随工艺参数的变化曲线"

图11

各分区显微硬度随工艺参数的变化曲线"

1 马宗义, 商乔, 倪丁瑞, 等. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
Ma Zong-yi, Shang Qiao, Ni Ding-rui, et al. Friction stir welding of magnesium alloys: a review[J]. Acta Metallurgica Sinica, 2018, 54(11): 1597-1617.
2 郭兴伍, 郭嘉成, 章志铖, 等. 镁合金材料表面处理技术研究新动态[J]. 表面技术, 2017, 46(3): 53-65.
Guo Xing-wu, Guo Jia-cheng, Zhang Zhi-cheng, et al. New development trend of surface treatment technology for magnesium alloys[J]. Surface Technology, 2017, 46(3): 53-65.
3 Jiang H Y, Ding W B, Zeng X Q, et al. Mechanical behavior of gas tungsten arc surface modified composite layer on mg alloy AZ31 with SiCp and aluminum[J]. Materials Science Forum, 2007, 546-549: 485-490.
4 Tsujikawa M, Adachi S, Abe Y, et al. Corrosion protection of Mg-Li alloy by plasma thermal spraying of aluminum[J]. Plasma Processes and Polymers, 2007, 4(Sup.1): 593-596.
5 Yang Y, Wu H. Improving the wear resistance of AZ91D magnesium alloys by laser cladding with Al–Si powders[J]. Materials Letters, 2009, 63(1): 19-21.
6 Zhang C L, Zhang F, Song L, et al. Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg-Li-Ca alloy[J]. Journal of Alloys and Compounds, 2017, 728: 815-826.
7 宋雨来, 刘庆, 王海洋. 挤压镁合金腐蚀与防护研究进展[J]. 表面技术, 2020, 49(5): 112-119.
Song Yu-lai, Liu Qing, Wang Hai-yang. Progress in corrosion and protection of extruded magnesium alloys[J]. Surface Technology, 2020, 49(5): 112-119.
8 Mishra R S, Mahoney M W. Friction stir processing: a new grain refinement technique to achieve high strain rate superplasticity in commercial alloys[J]. Materials Science Forum, 2001, 357-359: 507-514.
9 陈娟, 彭立明, 韩靖宇, 等. 基于摩擦加工技术的镁合金表面改性研究现状[J]. 表面技术, 2017, 46(3): 9-19.
Chen Juan, Peng Li-ming, Han Jing-yu, et al. Research status of surface modification of magnesium alloys by friction-based processing technology[J]. Surface Technology, 2017, 46(3): 9-19.
10 Commin L, Dumont M, Masse J E, et al. Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters[J]. Acta Materialia, 2009, 57(2): 326-334.
11 卢晓红, 乔金辉, 周宇, 等. 搅拌摩擦焊温度场研究进展[J]. 吉林大学学报:工学版, 2023,53(1):1-17.
Lu Xiao-hong, Qiao Jin-hui, Zhou Yu, et al. Research progress of temperature field in friction stir welding[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 1-17.
12 Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering: R: Reports, 2005, 50(1/2): 1-78.
13 李于朋, 孙大千, 宫文彪. 6082⁃T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报:工学版, 2019, 49(3): 836-841.
Li Yu⁃peng, Sun Da⁃qian, Gong Wen⁃biao. Temperature fields in bobbin-tool friction stir welding for 6082-T6 aluminum alloy sheet[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 836-841.
14 徐安莲. 镁合金搅拌摩擦焊接头的显微组织及力学性能[D]. 重庆: 重庆大学材料科学与工程学院, 2016.
Xu An-lian. Microstructure and mechanical properties of magnesium alloys after friction stir welding[D]. Chongqing: College of Materials Science and Engineering, Chongqing University, 2016.
15 Song W W, Xu X, Zuo D, et al. Study on the corrosion of copper alloy by friction stir surface processing[J]. Anti-Corrosion Methods and Materials, 2016, 63(3): 190-195.
16 Song W W, Xu X, Zuo D, et al. Effect of processing parameters and temperature on sliding wear of H62 copper alloy modified by friction stir surface processing[J]. Materials Science, 2017, 23(3):222-226.
17 Hamilton C, Węglowski M S, Dymek S. A simulation of friction-stir processing for temperature and material flow[J]. Metallurgical and Materials Transactions B, 2015, 46(3): 1409-1418.
18 Węglowski M S, Pietras A, Dymek S, et al. Characterization of friction modified processing-a novel tool for enhancing surface properties in cast aluminium alloys[J]. Key Engineering Materials, 2012, 504-506: 1231-1236.
19 Tang W, Guo X, McClure J C, et al. Heat input and temperature distribution in friction stir welding[J]. Journal of Materials Processing & Manufacturing Science, 1998, 7(2): 163-172.
20 王大勇, 冯吉才. 搅拌摩擦焊焊缝表面弧形纹形成模型[J]. 焊接学报, 2003, 24(5): 42-44.
Wang Da-yong, Feng Ji-cai. Process model of arc corrugation on friction-stir weld[J]. Transactions of The China Welding Institution, 2003, 24(5): 42-44.
21 Ji S D, Meng X C, Ma L, et al. Effect of groove distribution in shoulder on formation, macrostructures, and mechanical properties of pinless friction stir welding of 6061-O aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9-12): 3051-3058.
22 Armstrong R, Codd I, Douthwaite R M, et al. The plastic deformation of polycrystalline aggregates[J]. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 2006, 7(73): 45-58.
23 Hall E O. The deformation and ageing of mild steel: III discussion of results[J]. Proceedings of the Physical Society, 1951, 64(9): 747-753.
24 Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution[J]. Progress in Materials Science, 2021, 117:100752.
[1] 姬会爽,彭艳,刘洋,杨彦博,高鲲,尔立民. SCR生产线结晶腔铜液凝固行为及质量控制[J]. 吉林大学学报(工学版), 2021, 51(6): 2021-2030.
[2] 向红亮,陈盛涛,邓丽萍,张伟,詹土生. 微合金化2205双相不锈钢组织及性能[J]. 吉林大学学报(工学版), 2020, 50(5): 1645-1652.
[3] 谷晓燕,隋成龙,狄星,孟政宇,朱开轩,楚长春. 焊接能量对铜/钛超声波焊接接头性能的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1669-1676.
[4] 庄蔚敏,施宏达,解东旋,杨冠男. 钢铝异质无铆钉粘铆复合连接胶层厚度分布[J]. 吉林大学学报(工学版), 2020, 50(1): 100-106.
[5] 蔡中义,孟凡响,陈庆敏,赵轩. 复杂钩舌锻件近净成形的预锻形状优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 84-90.
[6] 石舟,寇淑清. 36MnVS4裂解连杆性能分析及轻量化设计[J]. 吉林大学学报(工学版), 2019, 49(6): 1992-2001.
[7] 关庆丰,姚欣雯,杨洋,张凌燕,刘迪,李晨,吕鹏. 强流脉冲电子束作用下TC4钛合金表面Cr合金层制备及性能[J]. 吉林大学学报(工学版), 2019, 49(6): 2002-2009.
[8] 依卓,付文智,李明哲. 双层剖分式超高压模具数值模拟及实验[J]. 吉林大学学报(工学版), 2019, 49(5): 1593-1599.
[9] 谷晓燕,刘东锋,刘婧,孙大千,马会峰. 焊接能量对Cu/Al超声波焊接接头组织与性能的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1600-1607.
[10] 李欣,孙延朋,王丹,陈军绪,谷诤巍,徐虹. 汽车前地板成形有限元数值模拟[J]. 吉林大学学报(工学版), 2019, 49(5): 1608-1614.
[11] 李欣,王丹,陈军绪,孙延朋,谷诤巍,徐虹. 手刹固定板冲压成形数值模拟[J]. 吉林大学学报(工学版), 2019, 49(4): 1258-1265.
[12] 刘文权,盈亮,荣海,胡平. 基于损伤修正M⁃K模型的高强度钢成形极限预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1266-1271.
[13] 张学广,贾明萌,刘纯国,何广忠. 基于增量控制的型材拉弯轨迹设计及有限元仿真[J]. 吉林大学学报(工学版), 2019, 49(4): 1272-1279.
[14] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[15] 胡志清, 颜庭旭, 李洪杰, 吕振华, 廖伟, 刘庚. 深冷处理对铝合金薄板冲剪成形性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1524-1530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!