吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (9): 2542-2553.doi: 10.13229/j.cnki.jdxbgxb.20211260

• 交通运输工程·土木工程 • 上一篇    下一篇

土工格栅加筋橡胶砂应力-应变特性试验

刘方成1(),王将1,吴孟桃2,补国斌1(),何杰1   

  1. 1.湖南工业大学 土木工程学院,湖南 株洲 412007
    2.天津大学 建筑工程学院,天津 300072
  • 收稿日期:2021-08-20 出版日期:2023-09-01 发布日期:2023-10-09
  • 通讯作者: 补国斌 E-mail:fcliu@hut.edu.cn;guobinbu@hut.edu.cn
  • 作者简介:刘方成(1978-),男,教授,博士.研究方向:土动力特性,土-结构动力相互作用及岩土隔震.E-mail:fcliu@hut.edu.cn
  • 基金资助:
    中国地震局工程力学研究所基本科研业务费专项项目(2019D25);湖南省自然科学基金项目(2019JJ50130)

Stress⁃strain characteristics of geogrid reinforced rubber sand mixtures

Fang-cheng LIU1(),Jiang WANG1,Meng-tao WU2,Guo-bin BU1(),Jie HE1   

  1. 1.College of Civil Engineering,Hunan University of Technology,Zhuzhou 412007,China
    2.School of Civil Engineering,Tianjin University,Tianjin 300072,China
  • Received:2021-08-20 Online:2023-09-01 Published:2023-10-09
  • Contact: Guo-bin BU E-mail:fcliu@hut.edu.cn;guobinbu@hut.edu.cn

摘要:

基于静三轴剪切试验,分析了5种配比(0%、10%、20%、30%、40%)、4种格栅布置方式(无筋、水平1层、水平2层、水平3层)、3种围压(50、100、200 kPa)下土工格栅加筋橡胶砂的应力-应变关系特性和模量衰减特性。结果表明:①土工格栅加筋使得橡胶砂应力-应变关系曲线明显升高,加筋后橡胶砂的硬化特性增强。②采用扩展邓肯-张模型进行拟合,随着橡胶颗粒含量的增加,橡胶砂初始模量降低,模量衰减程度可由衰减参数定量反映;模量曲线衰减程度随加筋工况“水平3层加筋、无筋、水平2层加筋、水平1层加筋”依次增大。③土工格栅加筋使得橡胶砂的参考应变增大、应力-应变模型指数减小,即模量归一化应力应变曲线非线性程度减弱,随着土工格栅加筋密度和配比的增大,土工格栅对橡胶砂应力应变特性的加筋效应更显著。

关键词: 岩土工程, 橡胶砂, 土工格栅加筋, 三轴试验, 应力-应变关系, 加筋效应

Abstract:

Based on the static triaxial shear test, the stress-strain characteristics, the modulus attenuation properties, and the normalized stress-strain behavior of reinforcing rubber sand mixtures were analyzed. Five kinds of rubber content (0%, 10%, 20%, 30%, and 40%), four kinds of geogrid reinforcing patterns (lateral arrangement with no layer/one layer/two layers/three layers), and three kinds of confining pressure(50 kPa、100 kPa、200 kPa) were taken into account in tests. Results indicate that ①The geogrid reinforcement makes stress-strain curves of rubber sand mixture raised obviously, and the hardening characteristics of the reinforced specimens are enhanced. ②The stress-strain behavior of the rubber sand mixture could be simulated well by the extended Duncan-chang hyperbola model, and the model parameters are evaluated with rubber content in the rubber sand mixture. With the increase of rubber content, the initial modulus of the rubber sand mixture decreases, and the attenuation parameters can quantitatively reflect the degree of modulus attenuation. The attenuation degree of rubber sand mixture increases for geogrid reinforcing cases lateral arrangement with three layers/no layer/two layers/one layer, but the overall difference is insignificant. ③With the use of geogrid reinforced, the reference strain of the rubber sand is increased while the index of the stress-strain model is decreased. To illustrate, the degree of nonlinearity of the normalized stress-strain curve of the modulus is weakened. With the increase of the geogrid-reinforced density and rubber content, the reinforcement effect of geogrid on the stress-strain characteristics of rubber sand is more significant.

Key words: geotechnical engineering, rubber sand mixture, geogrid reinforcement, triaxial shear tests, stress-strain relationship, geo-reinforcement effects

中图分类号: 

  • TU411.3

表1

试验材料物理特性"

试验材料比重Gs粒径/mm平均粒径D50不均匀系数Cu
废橡胶颗粒1.210.5~51.54.77
标准砂2.630.05~20.642.23

表2

玻纤土工格栅的技术参数"

材料网格尺寸/mm延伸率/%弹性模量/GPa抗拉强度/(kN·m-1
纵向横向
玻璃纤维12.7×12.7≤3676060

图1

橡胶和砂的颗粒级配曲线"

图2

试样加筋方案"

表3

不同配比橡胶砂混合物的密度"

配合比RC/%

ρdmin/

(g·cm-3

ρdmax/

(g·cm-3

相对密度Dr

装样密度ρ/

(g·cm-3

01.511.860.71.74
101.381.710.71.60
201.211.500.71.40
301.041.290.71.20
400.871.170.71.06

图3

试验材料"

图4

0%橡胶砂(纯砂)应力-应变关系及拟合曲线"

图5

10%橡胶砂应力-应变关系及拟合曲线"

图6

20%橡胶砂(纯砂)应力-应变关系及拟合曲线"

图7

30%橡胶砂(纯砂)应力-应变关系及拟合曲线"

图8

40%橡胶砂(纯砂)应力-应变关系及拟合曲线"

表4

加筋橡胶砂破坏应力及应力-应变关系参数拟合值"

RC/%σ3/kPa无筋1层加筋2层加筋3层加筋
E0/MPaεr/%αE0/MPaεr/%αE0/MPaεr/%αE0/MPaεr/%α
05022.641.761.3831.801.291.2237.781.071.1126.902.011.14
10026.242.781.3931.182.451.3025.893.431.4128.092.681.12
20035.864.361.6337.094.571.5241.234.241.3447.553.281.15
10507.974.891.497.096.881.619.126.021.6211.884.871.31
10010.496.791.8510.887.041.529.769.081.6612.337.721.39
20014.978.521.8915.469.031.6520.456.971.3520.037.751.33
20503.5710.001.855.516.081.105.477.481.013.9717.001.83
1005.7711.482.206.5911.421.526.2914.121.766.3116.561.47
2008.5312.731.999.5913.471.779.1617.421.3810.9115.061.38
30502.5811.441.884.206.651.163.988.691.182.6421.501.61
1004.3412.821.874.5314.271.574.6115.341.294.2921.611.41
2005.9315.881.856.5815.631.265.7025.211.146.3222.311.38
40502.1911.591.602.1715.191.592.2017.111.392.1323.760.71
1003.1415.201.693.2916.001.013.8813.840.644.4023.810.70
2004.1319.702.274.6222.191.265.1820.701.145.2821.331.71

图9

本文试验所得无筋橡胶砂应力-应变参数与已有研究对比"

图10

不同加筋工况对初始弹性模量的影响"

图11

橡胶砂初始弹性模量随橡胶含量的变化曲线"

表5

橡胶砂初始模量衰减参数拟合值"

加筋方式衰减参数A
无筋0.182(本文试验)
0.324(El-Sherbiny等36
0.197(Youwai等)37
水平1层加筋0.197
水平2层加筋0.184
水平3层加筋0.165

图12

不同加筋方式对参考应变的影响"

图13

橡胶砂指数参数α随橡胶含量的变化曲线"

图14

格栅加筋对橡胶砂初始弹性模量的影响"

图15

格栅加筋对橡胶砂参考应变的影响"

图16

格栅加筋对橡胶砂应力应变参数α的影响"

表6

加筋效应系数与加筋密度之间的斜率拟合值"

参数RC/%
010203040
CE0.1900.1830.1740.1020.148
Cε-0.0540.0670.2060.3180.308
Cα-0.141-0.135-0.224-0.235-0.358

图17

格栅加筋效应变化斜率随橡胶含量的变化"

图18

参考应变εr和指数参数α对应力应变曲线的影响"

1 Patil U, Valdes J R, Evans T M. Swell mitigation with granulated tire rubber[J]. Journal of Materials in Civil Engineering, 2011, 23(5): 721-727.
2 Soltani-jigheh H, Asadzadeh M, Marefat V. Effects of tire chips on shrinkage and cracking characteristics of cohesive soils[J]. Turkish Journal of Engineering and Environmental Sciences, 2013, 37(37): 259-271.
3 Xiao M, Bowen J, Graham M, et al. Comparison of seismic responses of geosynthetically reinforced walls with tire-derived aggregates and granular backfills[J]. Journal of Materials in Civil Engineering, 2012, 24(11): 1368-1377.
4 Christ M, Park J B, Hong S S. Laboratory Observation of the response of a buried pipeline to freezing rubber-sand backfill[J]. Journal of Materials in Civil Engineering, 2010, 22(9): 943-950.
5 Mehrjardi G T, Tafreshi S N M, Dawson A R. Numerical analysis on Buried pipes protected by combination of geocell reinforcement and rubber-soil mixture[J]. International Journal of Civil Engineering, Transaction B: Geotechnical Engineering, 2015, 13(2): 90-104.
6 Feng Z Y, Sutter K G. Dynamic properties of granulated rubber-sand mixtures[J]. Geotechnical Testing Journal, 2000, 23(3): 338-344.
7 Senetakis K, Anastasiadis A, Pitilakis K. Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes[J]. Soil Dynamics and Earthquake Engineering, 2012, 33(1): 38-53.
8 刘方成, 陈璐, 王海东. 橡胶砂动剪模量和阻尼比循环单剪试验研究[J]. 岩土力学, 2016, 37(7): 1903-1913.
Liu Fang-cheng, Chen Lu, Wang Hai-dong. Evaluation of dynamic shear modulus and damping ratio of rubber-sand mixture based on cyclic simple shear tests[J]. Rock and Soil Mechanics, 2016, 37(7): 1903-1913.
9 姚玉文, 刘方成, 补国斌, 等. 橡胶砂弹性动力学参数的弯曲-伸缩元试验研究[J]. 岩土力学, 2020, 41(7): 2369-2379.
Yao Yu-wen, Liu Fang-cheng, Bu Guo-bin, et al. Laboratory study on elastic dynamic mechanics of rubber-sand mixture by bender-extender element method[J]. Rock and Soil Mechanics, 2020, 41(7): 2369-2379.
10 Das S, Bhowmik D. Small-strain dynamic behavior of sand and sand-crumb rubber mixture for different sizes of crumb rubber particle[J]. Journal of Materials in Civil Engineering, 2020, 32(11): No. 04020334.
11 Rios S, Kowalska M, da Fonseca A V. Cyclic and dynamic behavior of sand-rubber and clay-rubber mixtures[J]. Geotechnical and Geological Engineering, 2021, 39(5): 3449-3467.
12 Lee J, Salgado R, Bernal A, et al. Shredded tires and rubber-sand as lightweight backfill[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(2): 132-141.
13 Tsang H H, Lo S H, Xu X, et al. Seismic isolation for low-to-medium-rise buildings using granulated rubber-soil mixtures: numerical study[J]. Earthquake Engineering and Structural Dynamics, 2012, 41(14): 2009-2024.
14 刘方成, 任东滨, 刘娜, 等. 土工格室加筋橡胶砂垫层隔震效果数值分析[J]. 土木工程学报, 2015, 47(): 1-7.
Liu Fang-cheng, Ren Dong-bin, Liu Na, et al. Numerical simulation on the isolation effect of geocell reinforced rubber-sand mixture cushion as earthquake base isolator[J]. China Civil Engineering Journal, 2015, 47(Sup.2): 1-7.
15 Tsang H H, Tran D P, Hung W Y, et al. Performance of geotechnical seismic isolation system using rubber-soil mixtures in centrifuge testing[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(5): 1271-1289.
16 Pitilakis D, Anastasiadis A, Vratsikidis A, et al. Large-scale field testing of geotechnical seismic isolation of structures using gravel-rubber mixtures[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(10): 2712-2731.
17 Zornberg J G, Cabral A R, Viratjandr C. Behaviour of tire shred sand mixtures[J]. Canadian Geotechnical Journal, 2004, 41(2): 227-241.
18 辛凌, 刘汉龙, 沈扬, 等. 废弃轮胎橡胶颗粒轻质混合土强度特性试验研究[J]. 岩土工程学报, 2010, 32(3): 428-433.
Xin Ling, Liu Han-long, Shen Yang, et al. Consolidated undrained triaxial compression tests on lightweight soil mixed with rubber chips of scrap tires[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 428-433.
19 Cabalar A F. Direct shear tests on waste tires-sand mixtures[J]. Geotechnical and Geological Engineering, 2011, 29(4): 411-418.
20 Vinod J S, Sheikh M N, Mastello D, et al. The direct shear strength of sand tyre shred mixtures[C]∥Proceedings of the International Conference on Geotechnical Engineering, Sri Lanka, 2015: 193-196.
21 汪明元, 施戈亮, 丁金华, 等. 土工格栅与压实膨胀土的界面模型及其参数[J]. 吉林大学学报:工学版, 2010, 40(3): 688-693.
Wang Ming-yuan, Shi Ge-liang, Ding Jin-hua, et al. Interface model and its parameters between geogrids and compacted expansive soil[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(3): 688-693.
22 王蔓, 李泽成, 白瑞祥. 复合材料格栅加筋板的分层扩展特性[J]. 吉林大学学报:工学版, 2007, 37(1): 229-233.
Wang Man, Li Ze-cheng, Bai Rui-xiang, Delamination growth characteristics for composite grid stiffened plates[J]. Journal of Jilin University(Engineering and Technology Edition), 2007, 37(1): 229-233.
23 杨广庆. 土工格栅加筋土结构理论及工程应用[M]. 北京:科学出版社, 2010.
24 Han J. Principles and Practice of Ground Improvement[M]. New York: John Wiley & Sons, 2015.
25 刘方成, 吴孟桃, 杨峻. 土工格栅加筋橡胶砂强度特性试验研究[J]. 岩土力学, 2019,40(2): 580-591.
Liu Fang-cheng, Wu Meng-tao, Yang Jun. Experimental study on strength characteristics of geogrid reinforced rubber sand mixtures[J]. Rock and Soil Mechanics, 2019, 40(2): 580-591.
26 刘启菲, 庄海洋, 陈佳,等.废旧轮胎橡胶颗粒-砂混合料抗剪强度与破坏模式试验研究[J].岩土工程学报, 2021, 43(10): 1887-1895.
Liu Qi-fei, Zhuang Hai-yang, Chen Jia, et al. The shear strength and failure mode of rubber particle-sand mixtures in the test[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1887-1895.
27 杨广庆, 李广信, 张保俭. 土工格栅界面摩擦特性试验研究[J]. 岩土工程学报, 2006, 28(8): 948-952.
Yang Guang-qing, Li Guang-xin, Zhang Bao-jian. Experimental studies on interface friction characteristics of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 948-952.
28 Abdi M R, Arjomand M A. Pullout tests conducted on clay reinforced with geogrid encapsulated in thin layers of sand[J]. Geotextiles and Geomembranes, 2011, 29(6): 588-595.
29 周小凤, 张孟喜, 邱成春, 等. 不同形式土工格栅加筋砂的强度特性[J]. 上海交通大学学报, 2013, 47(9): 1377-1381.
Zhou Xiao-feng, Zhang Meng-xi, Qiu Cheng-chun, et al. Strength of sand reinforced with different forms of geogrid[J]. Journal of Shanghai Jiao Tong University, 2013, 47(9): 1377-1381.
30 胡幼常, 申俊敏, 赵建斌, 等. 土工格栅加筋掺砂黄土工程性质试验研究[J]. 岩土力学, 2013(): 74-80.
Hu You-chang, Shen Jun-min, Zhao Jian-bin, et al. Experimental study of engineering properties of geogrid-reinforced loess mixed with sand[J]. Rock and Soil Mechanics, 2013(Sup.2): 74-80.
31 王协群, 郭敏, 胡波. 土工格栅加筋膨胀土的三轴试验研究[J]. 岩土力学, 2011, 32(6): 1649-1653.
Wang Xie-qun, Guo Min, Hu Bo. Triaxial testing study of expansive soil reinforced with geogrid[J]. Rock and Soil Mechanics, 2011, 32(6): 1649-1653.
32 Ahmed I. Laboratory Study on Properties of Rubber-soils[M]. Indiana, USA: Purdue University, 1993.
33 Verdugo R, Ishihara K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91.
34 Zheng Y F, Kevin G S. Dynamic properties of granulated rubber/sand mixtures[J]. Geotechnical Testing Journal, 2000, 23(3): 338-344.
35 Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of Soil Mechanics and Foundations Division, 1970, 96(5): 1629-1653.
36 刘方成, 张永富, 任东滨. 橡胶砂应力-应变特性三轴-单剪联合试验研究[J]. 岩土力学, 2016, 37(10): 2769-2779.
Liu Fang-cheng, Zhang Yong-fu, Ren Dong-bin. Stress-strain characteristics of rubber-sand mixtures in united triaxial shear and simple shear tests[J]. Rock and Soil Mechanics, 2016, 37(1): 2769-2779.
37 Youwai S, Bergado D T. Strength and deformation characteristics of shredded rubber tire sand mixtures[J]. Canadian Geotechnical Journal, 2003, 40(2): 254-264.
[1] 宫亚峰,吴树正,毕海鹏,谭国金. 基于现场监测技术的装配式箱涵温度场及冻胀分析[J]. 吉林大学学报(工学版), 2023, 53(8): 2321-2331.
[2] 李新宇,凌贤长,曲娜. 考虑温度效应的冻结膨胀土统计损伤模型[J]. 吉林大学学报(工学版), 2023, 53(8): 2339-2349.
[3] 惠迎新,陈嘉伟. 基于改进遗传算法的挤扩支盘群桩优化方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2089-2098.
[4] 宫亚峰,吴树正,毕海鹏,周冬明,谭国金,黄晓明. 玄武岩纤维活性粉末混凝土与钢绞线粘结滑移过程声学特性表征[J]. 吉林大学学报(工学版), 2023, 53(6): 1819-1832.
[5] 张哲,付伟,张军辉,黄超. 循环荷载下冻融路基黏土长期塑性行为[J]. 吉林大学学报(工学版), 2023, 53(6): 1790-1798.
[6] 刘顺,唐小微,栾一晓. 可液化土阻尼系数对地铁结构地震响应的影响[J]. 吉林大学学报(工学版), 2023, 53(1): 159-169.
[7] 唐亮,司盼,崔杰,凌贤长,满孝峰. 液化微倾场地群桩地震反应分析拟静力方法[J]. 吉林大学学报(工学版), 2022, 52(4): 847-855.
[8] 姜屏,周琳,毛天豪,袁俊平,王伟,李娜. 水泥改性废弃泥浆损伤模型及时间效应[J]. 吉林大学学报(工学版), 2022, 52(12): 2874-2882.
[9] 文畅平,任睆遐. 基于Lade模型的生物酶改良膨胀土双屈服面本构关系[J]. 吉林大学学报(工学版), 2021, 51(5): 1716-1723.
[10] 张飞,朱玉明,杨尚川,王庶懋. 加筋土挡墙碳排放计算方法与减排性分析[J]. 吉林大学学报(工学版), 2021, 51(2): 631-637.
[11] 陶文斌,侯俊领,陈铁林,唐彬. 高预紧力后张法全长锚固支护力学分析[J]. 吉林大学学报(工学版), 2020, 50(2): 631-640.
[12] 高登辉,邢义川,郭敏霞,张爱军,王献涛,马保红. 非饱和重塑黄土⁃混凝土接触面修正双曲线模型[J]. 吉林大学学报(工学版), 2020, 50(1): 156-164.
[13] 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724.
[14] 杨爱武,周金,孔令伟. 固化吹填软土力学特性试验[J]. 吉林大学学报(工学版), 2014, 44(3): 661-667.
[15] 刘寒冰, 王静, 魏海斌, 冯恺. 冻融循环下路基土抗剪强度与塑性指数相关性[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 149-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] 冯浩,席建锋,矫成武 . 基于前视距离的路侧交通标志设置方法[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .