吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (12): 3501-3507.doi: 10.13229/j.cnki.jdxbgxb.20220916

• 交通运输工程·土木工程 • 上一篇    

砂浆碱集料反应细观数值模拟

魏丽丽1,2(),胡明玉1()   

  1. 1.南昌大学 工程建设学院,南昌 330031
    2.赤峰学院 资源环境与建筑工程学院,内蒙古 赤峰 024000
  • 收稿日期:2022-07-21 出版日期:2023-12-01 发布日期:2024-01-12
  • 通讯作者: 胡明玉 E-mail:wlili85555@163.com;yidajiang11112@163.com
  • 作者简介:魏丽丽(1983-),女,副教授,博士研究生.研究方向:混凝土材料的耐久性.E-mail:wlili85555@163.com
  • 基金资助:
    国家自然科学基金项目(51362021)

Meso numerical simulation of alkali aggregate reaction in mortar

Li-li WEI1,2(),Ming-yu HU1()   

  1. 1.School of Infrastructure Engineering,Nanchang University,Nanchang 330031,China
    2.School of Resources Environment and Architectural Engineering,Chifeng University,Chifeng 024000,China
  • Received:2022-07-21 Online:2023-12-01 Published:2024-01-12
  • Contact: Ming-yu HU E-mail:wlili85555@163.com;yidajiang11112@163.com

摘要:

由于局部砂浆碱集料现场测试中存在着对上部竖向的压力,为研究砂浆碱集料反应的力学性能,进行了砂浆碱集料反应细观数值模拟。用砂浆棒快速法制备了试样,进行了砂浆试样膨胀率、抗压强度、抗折强度测定;将砂浆试样看作由骨料、界面过渡区(ITZ)和砂浆基体组成的三相复合材料,建立了碱集料反应膨胀模型和碱集料反应强度模型,模拟了不同尺寸规格试样在不同龄期的抗压和抗折性能,解决了砂浆抗压强度和抗折强度较高的问题,仿真结果与测试结果基本一致,证明该模拟仿真具有较好的实用性。

关键词: 砂浆, 碱集料反应, 细观数值模型, 力学性能

Abstract:

Because there is vertical pressure on the upper part in the field test of local mortar alkali aggregate, in order to study the mechanical properties of mortar alkali aggregate reaction, a mesoscopic numerical simulation of mortar alkali aggregate reaction was carried out. The sample was prepared by mortar bar rapid method, and the expansion rate, compressive strength and flexural strength of mortar sample were measured. The mortar sample was regarded as a three-phase composite material composed of aggregate, interface transition zone (ITZ) and mortar matrix, and the alkali-aggregate reaction expansion model and alkali-aggregate reaction strength model were established to simulate the compressive and flexural properties of samples with different sizes at different ages, which solves the problem of high compressive and flexural strength of mortar, and obtains the conclusion that the simulation results are basically consistent with the test results. The simulation has good practicability.

Key words: mortar, alkali aggregate reaction, meso numerical model, mechanical property

中图分类号: 

  • TU528.56

表1

水泥的主要性能"

项目抗折强度/MPa抗压强度/MPa凝结周期/min
3 d28 d3 d28 d初凝终凝
标准要求≥4.0≥6.5≥22.0≥42.5>45<390
测定值5.792750.1133225

表2

砂浆配合比"

试样编号试样规格/mm水泥 质量/gNaOH质量/g水质量/g集料 质量/g
W125×25×2804402.84206.8990
W240×40×1604840227.51089
W340×40×1604843.12227.51089

表3

W2、W3的强度 ( MPa)"

试样7 d14 d28 d60 d
抗压抗折抗压抗折抗压抗折抗压抗折
W27.5431.288.6643.479.4455.9410.7158.52
W39.3140.779.3641.2310.7347.268.0430.72

图1

碱集料反应膨胀模型"

图2

碱集料反应强度模型"

表4

砂浆材料力学参数"

周期/d原料

密度/

(t·mm-3

杨氏 模量/103泊松比热膨胀 系数/10-5膨胀角/(°)偏心率fb0/fc0k黏性 系数抗压 强度/MPa抗拉 强度/MPa
7骨料2.30500.21.40300.11.160.6670.00510010
ITZ1.80260.2175300.11.160.6670.005252.5
砂浆基体1.80300.21.40300.11.160.6670.005284.7
14骨料2.30500.21.40300.11.160.6670.00510010
ITZ1.80260.2330300.11.160.6670.005252.5
砂浆基体1.80300.21.40300.11.160.6670.005405.5
28骨料2.30500.21.40300.11.160.6670.00510010
ITZ1.80260.2450300.11.160.6670.005252.5
砂浆基体1.80300.21.40300.11.160.6670.00551.56
60骨料2.30500.21.40300.11.160.6670.00510010
ITZ1.80260.2560300.11.160.6670.005252.5
砂浆基体1.80300.21.40300.11.160.6670.00553.887.3

图3

模拟结果与试验结果对比图"

图4

碱集料反应强度模型抗压应力云图"

图5

碱集料反应强度模型抗折应力云图"

1 王耀, 纵岗, 付佳佳,等. 再生骨料取代率及老砂浆强度对混凝土细观性能的影响[J]. 混凝土, 2020(5): 64-68.
Wang Yao, Zong Gang, Fu Jia-jia, et al. Effect of recycled aggregate replacement ratio and old mortar strength on mesoscopic properties of concrete[J]. Concrete, 2020(5): 64-68.
2 金浏, 杨旺贤, 余文轩,等. 基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析[J]. 工程力学, 2020, 37(3): 56-65.
Jin Liu, Yang Wang-xian, Yu Wen-xuan, et al. Dynamic compressive failure and size effect in lightweight aggregate concrete based on meso-scale simulation[J]. Engineering Mechanics, 2020, 37(3): 56-65.
3 朱华胜, 曾晓辉, 刘海川,等. 水泥乳化沥青砂浆静态力学性能与组成的关系[J]. 硅酸盐学报, 2020, 48(5): 644-651.
Zhu Hua-sheng, Zeng Xiao-hui, Liu Hai-chuan, et al. Relationship between static mechanical properties and composition of cement and emulsified asphalt mortar[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 644-651.
4 朱愿愿, 王爱国, 孙道胜, 等. 煅烧煤矸石细骨料特性及其对砂浆性能的提升作用[J]. 煤炭学报, 2021, 46(11): 3657-3669.
Zhu Yuan-yuan, Wang Ai-guo, Sun Dao-sheng, et al. Characteristics of coal gangue fine aggregates after calcination and its effects on the improvement of mortar properties[J]. Journal of China Coal Society, 2021, 46(11): 3657-3669.
5 张彩虹, 宋志刚, 毛敏, 等. 水泥砂浆受硫酸溶蚀的试验研究和数值模拟[J]. 自然灾害学报, 2021, 3(1):112-121.
Zhang Cai-hong, Song Zhi-gang, Mao Min, et al. Experimental study and numerical simulation on cement mortar corroded by sulfuric acid[J]. Journal of Natural Disasters, 2021, 3(1): 112-121.
6 王昊, 王文杰. 全长砂浆锚固玻璃钢锚杆动力响应数值模拟分析[J]. 化工矿物与加工, 2020, 49(9): 10-14.
Wang Hao, Wang Wen-jie. Numerical simulation analysis of dynamic response to the FRP bolt anchored with full length of mortar[J]. Industrial Minerals & Processing, 2020, 49(9): 10-14.
7 陈聪, 柯国军, 谭天戈, 等. 蒸压养护对废玻璃粉复合砂浆力学性能的改善[J]. 中国粉体技术, 2020, 26(4): 46-51.
Chen Cong, Ke Guo-jun, Tan Tian-ge, et al. Improvement of mechanical properties of waste glass powder composite mortar by autoclave curing[J]. China Powder Science and Technology, 2020, 26(4): 46-51.
8 钱达友, 杨建明. 水冻融和硫酸盐溶液冻融环境下MKPC砂浆的耐久性评价[J]. 硅酸盐通报, 2020, 39(2): 359-366.
Qian Da-you, Yang Jian-ming. Durability evaluation of MKPC mortar under water-freeze-thaw and sulfate solution freeze-thaw environment[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 359-366.
9 李黎, 陶佳诚, 曹明莉, 等. 混杂纤维增强砂浆高温后单轴受压本构关系[J]. 复合材料学报, 2022, 39(11):5375-5385.
Li Li, Tao Jia-cheng, Cao Ming-li, et al. Constitutive relation of uniaxial compression of hybrid fiber reinforced mortar after high temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5375-5385.
10 王宁, 马涛, 陈丰, 等. 影响智能骨料感知的关键因素及数据分析方法[J]. 吉林大学学报: 工学版, 2023, 53(6): 1799-1808.
Wang Ning, Ma Tao, Chen Feng, et al. Key factors affecting smart aggregate perception and data analysis methods[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(6): 1799-1808.
11 杜修力,金浏. 混凝土材料宏观力学特性分析的细观单元等效化模型[J]. 计算力学学报, 2012, 29(5): 654-661.
Du Xiu-li, Jin Liu. Meso-element equivalent model for macro-scopic mechanical properties analysis of concrete materials[J]. Chinese Journal of Computational Mechanics, 2012,29(5): 654-661.
12 杜修力,金浏. 非匀质混凝土材料破坏的三维细观数值模拟[J]. 工程力学, 2013, 30(2): 82-88.
Du Xiu-li, Jin Liu. Numerical simulation of three-dimensional meso-mechanical model for damage process of heterogeneous concrete[J]. Engineering Mechanics, 2013, 30(2): 82-88.
[1] 许良,边钰博,周松,肖景厚. 高温水浸对T800/环氧树脂基复合材料性能的影响[J]. 吉林大学学报(工学版), 2023, 53(7): 1943-1950.
[2] 匡亚川,宋哲轩,刘胤虎,莫小飞,伏亮明,罗时权. 新型装配式双舱综合管廊力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 596-603.
[3] 魏海斌,王相焱,王富玉,张勇. 基于振动成型AC-25沥青混合料力学性能及细观分析[J]. 吉林大学学报(工学版), 2021, 51(4): 1269-1276.
[4] 程永春,李赫,李立顶,王海涛,白云硕,柴潮. 基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J]. 吉林大学学报(工学版), 2021, 51(3): 925-935.
[5] 刘寒冰,高鑫,宫亚峰,刘诗琪,李文俊. 表面处理对玄武岩纤维活性粉末混凝土力学性能的影响及断裂特性[J]. 吉林大学学报(工学版), 2021, 51(3): 936-945.
[6] 王金国,王志强,任帅,闫瑞芳,黄恺,郭劲. Ti添加量对球墨铸铁组织及力学性能的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1653-1662.
[7] 向红亮,陈盛涛,邓丽萍,张伟,詹土生. 微合金化2205双相不锈钢组织及性能[J]. 吉林大学学报(工学版), 2020, 50(5): 1645-1652.
[8] 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667.
[9] 修文翠,吴化,韩英,刘云旭. 等温热处理温度对超级贝氏体组织与性能的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 520-525.
[10] 佟鑫,张雅娇,黄玉山,胡正正,王庆,张志辉. 选区激光熔化304L不锈钢的组织结构及力学性能分析[J]. 吉林大学学报(工学版), 2019, 49(5): 1615-1621.
[11] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[12] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[13] 庄蔚敏, 赵文增, 解东旋, 李兵. 超高强钢/铝合金热铆连接接头性能[J]. 吉林大学学报(工学版), 2018, 48(4): 1016-1022.
[14] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[15] 李春玲, 樊丁, 王斌, 余淑荣. 5A06铝合金/镀锌钢预置涂粉对接激光熔钎焊组织与性能[J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!