吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1653-1662.doi: 10.13229/j.cnki.jdxbgxb20190514

• 材料科学与工程 • 上一篇    

Ti添加量对球墨铸铁组织及力学性能的影响

王金国1,2(),王志强1,2,任帅1,2,闫瑞芳1,2,黄恺1,2,郭劲1,2   

  1. 1.吉林大学 汽车材料教育部重点实验室,长春 130022
    2.吉林大学 材料科学与工程学院,长春 130022
  • 收稿日期:2019-05-24 出版日期:2020-09-01 发布日期:2020-09-16
  • 作者简介:王金国(1964-),男,教授,博士生导师.研究方向:金属材料,球墨铸铁组织及性能.E-mail:jgwang@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51571101)

Effect of Ti addition on microstructure and mechanical properties of ductile iron

Jin-guo WANG1,2(),Zhi-qiang WANG1,2,Shuai REN1,2,Rui-fang YAN1,2,Kai HUANG1,2,Jin GUO1,2   

  1. 1.Key Laboratory of Automotive Materials Ministry of Education, Jilin University, Changchun 130022, China
    2.College of Materials Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2019-05-24 Online:2020-09-01 Published:2020-09-16

摘要:

将Ti-C-Fe预制块添加到球墨铸铁中,考察了不同Ti含量对球墨铸铁组织及力学性能的影响。结果表明:Ti添加后,在铁液中主要以TiC和Ti(C,N)的形式存在,并使珠光体和铁素体组织得到细化;Ti的质量分数为0.023%时,石墨数目、球化率以及铁素体含量提高;随着Ti含量的升高,生成的TiC颗粒会阻碍C原子的扩散,使石墨球出现畸变,球化率下降,铁素体含量降低。力学性能测试表明:Ti的质量分数为0.023%的试样具有良好的综合力学性能,其屈服强度和抗拉强度分别提高了5.43%、3.73%,延伸率提高了10.64%;当Ti的质量分数为0.054%~0.072%时,试样有较高的抗拉强度;Ti质量分数达到最高0.135%时,试样的屈服强度和布氏硬度达到最大。

关键词: 金属材料, 球墨铸铁, TiC, 力学性能

Abstract:

The effects of different Ti contents on the microstructure and mechanical properties of ductile cast iron were investigated by adding Ti-C-Fe pre-forms. The results show that Ti mainly exists in the form of TiC and Ti (C,N) in molten iron, and the structures of pearlite and ferrite are refined. Ti content of 0.023 wt.% can increase the spheroidization rate, graphite number and ferrite content. With the increase of Ti content, The generated TiC particles will hinder the diffusion of C atoms, resulting in distortion of the graphite spheres, a decrease in the spheroidization rate and ferrite content. The mechanical properties of the specimens were tested and found that the ductile iron specimen with Ti content of 0.023 wt.% possessed good comprehensive mechanical properties, and its yield strength and tensile strength were increased by 5.43% and 3.73% respectively, and the elongation percentage was increased by 10.64%. When the Ti content was between 0.054 wt.% and 0.072 wt.%, the tensile strength of the sample was higher. The yield strength and brinell hardness of the sample with Ti content of 0.135 wt.% reached the maximum.

Key words: metallic materials, ductile iron, TiC, mechanical properties

中图分类号: 

  • TG143.5

表1

球墨铸铁试样的化学成分 (%)"

试样CSiMnPSTiMgCe
Z03.032.450.520.0060.0080.0060.0330.029

Z1

Z2

Z3

Z4

3.05

3.11

3.14

3.14

2.42

2.41

2.41

2.39

0.52

0.50

0.52

0.52

0.006

0.006

0.006

0.006

0.008

0.008

0.008

0.008

0.023

0.054

0.072

0.135

0.034

0.034

0.035

0.032

0.029

0.030

0.030

0.029

图1

试样组织及元素面扫描"

图2

珠光体中的生成物颗粒"

图3

TiC颗粒形成及分布示意图"

图4

石墨和基体组织图"

表2

不同Ti含量试样的石墨分析"

项目Z0Z1Z2Z3Z4
Ti/(质量分数%)0.0060.0230.0540.0720.135
球化率/%70.273.065.460.248.5
单位面积石墨数/(N·mm-2)42.552.147.945.143.5
石墨面积比/%9.3010.4011.099.499.01

图5

铁素体中的生成物颗粒"

图6

不同Ti质量分数试样铁素体晶粒度测量示意图"

表3

不同Ti含量试样的铁素体晶粒度统计"

项目Z0Z1Z2Z3Z4
Ti/质量分数%0.0060.0230.0540.0720.135
晶粒度级别数8.178.679.009.159.40
晶粒数目22633201396844615282

表4

不同Ti含量试样的组织分析"

项目Z0Z1Z2Z3Z4
铁素体含量/%61.563.058.258.054.2
珠光体含量/%38.537.041.842.045.8

图7

不同Ti质量分数试样的力学性能"

表5

不同Ti含量试样的力学性能"

项 目Z0Z1Z2Z3Z4
Ti/质量分数%0.0060.0230.0540.0720.135
屈服强度/MPa350369399390410
抗拉强度/MPa510529582575542

断后延伸率/%

布氏硬度/HB

14.10

159

15.61

150

13.82

170

13.22

177

12.40

190

图8

断口形貌"

1 李艳霞, 王文韶, 刘俊友, 等. 钛含量对中铬铸铁组织和性能的影响[J]. 材料导报, 2015, 29(1): 406-408, 416.
Li Yan-xia, Wang Wen-shao, Liu Jun-you, et al. Influences of Ti content on microstructure and property of medium-chromium cast iron[J]. Materials Reports, 2015, 29(1): 406-408, 416.
2 钟兵. 高Ti对灰铸铁组织及性能的影响[J]. 铸造技术, 2017, 38(8): 1949-1952.
Zhong Bing. Influence of high Ti on microstructure and properties of gray cast iron[J]. Foundry Technology, 2017, 38(8): 1949-1952.
3 赵玉谦, 方世杰, 赵宇光, 等. (Ti,Fe)-Al-C体系钢铁基复合材料的热力学计算与分析[J]. 吉林大学学报: 工学版, 2005, 35(4): 343-347.
Zhao Yu-qian, Fang Shi-jie, Zhao Yu-guang, et al. Thermodynamic calculation and analysis of steel matrix composite of(Ti, Fe)-Al-C system[J]. Journal of Jilin University(Engineering and Technology Edition), 2005, 35(4): 343-347.
4 赵宇光, 姜启川, 任露泉, 等. Fe-C-Ti-Mn合金系中TiC原位生成反应的热力学分析[J]. 吉林大学学报: 工学版, 2004, 34(1): 1-6.
Zhao Yu-guang, Jiang Qi-chuan, Ren Lu-quan, et al. Thermodynamic analysis on in-situ TiC synthesis in Fe-C-Ti-Mn system[J]. Journal of Jilin University(Engineering and Technology Edition), 2004, 34(1): 1-6.
5 郭文涛, 陈淑英, 李青春, 等. 球墨铸铁中含Ti夹杂物的研究[J]. 铸造, 2012, 61(1): 92-96.
Guo Wen-tao, Chen Shu-ying, Li Qing-chun, et al. Study on Ti-inclusions in ductile iron[J]. China Foundry, 2012, 61(1): 92-96.
6 吕维洁, 杨志峰, 张荻, 等. 原位合成钛基复合材料增强体TiC的微结构特征[J]. 中国有色金属学报, 2002, 12(3): 511-516.
Lv Wei-jie, Yang Zhi-feng, Zhang Di, et al. Microstructural characterization of TiC in in situ synthesized titanium matrix composites[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 511-516.
7 Lv W J, Zhang D, Zhang X N, et al. Growth mechanism of reinforcements in in-situ synthesized(TiB+TiC)/Ti composites[J]. Transactions of Nonferrous Metals Society of China, 2001, 11(1): 67-71.
8 Li Y, Li Y Q, Fruehan R J. Foamation of titanium carbonitride from hot metal[J]. ISIJ International, 2001, 41(12): 1417-1422.
9 申志清, 田学雷, 郑洪亮, 等. 球墨铸铁石墨球核心组成及形核机制的研究[J]. 铸造, 2012, 61(4): 357-361.
Shen Zhi-qing, Tian Xue-lei, Zheng Hong-liang, et al. Phase composition and nucleation mechanism of spheroidal graphite nucleus in ductile iron[J]. China Foundry, 2012, 61(4): 357-361.
10 Fraś E, Górny M. Inoculation effects of cast iron[J]. Arichives of Foundry Engineering, 2012, 12(4): 39-46.
11 Xu Z M, Liang G F, Guan Q F, et al. TiC as heterogeneous nuclei of the(Fe, Mn)3C and austenite intergrowth eutectic in austenite steel matrix wear resistant composite[J]. Materials Research Bulletin, 2003, 39(3): 457-463.
12 韩悦. 内生纳米/亚微米TiC增强铁基复合材料组织与力学性能[D]. 长春: 吉林大学材料科学与工程学院, 2016.
Han Yue. Microstructures and mechanical properties of in situ synthesized nano/sub-micron-sized TiC reinforced iron composites[D]. Changchun: School of Materials Science and Engineering, Jilin University, 2016.
13 陈刚, 毛永锋, 赵玉涛, 等. 一种原位碳化钛颗粒增强铁基复合材料及其制备方法[P]. 中国: CN201210054540.9, 2012-07-18.
14 刘志科. 原位合成铁基复合材料的微结构特征、生长机制以及界面反应机理的研究[D]. 南宁: 广西大学机械工程学院, 2009.
Liu Zhi-ke. Study on the microstructure, grow mechanism of reinforcement and interface in in situ synthesized ferrous matrix composite[D]. Nanning: College of Mechanical Engineering, Guangxi University, 2009.
[1] 向红亮,陈盛涛,邓丽萍,张伟,詹土生. 微合金化2205双相不锈钢组织及性能[J]. 吉林大学学报(工学版), 2020, 50(5): 1645-1652.
[2] 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667.
[3] 宫文彪,朱芮,郄新哲,崔恒,宫明月. 6082铝合金超厚板搅拌摩擦焊接头组织与性能[J]. 吉林大学学报(工学版), 2020, 50(2): 512-519.
[4] 修文翠,吴化,韩英,刘云旭. 等温热处理温度对超级贝氏体组织与性能的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 520-525.
[5] 尹超英,邵春福,王晓全,熊志华. 考虑空间异质性的建成环境对通勤方式选择的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 543-548.
[6] 陈学文,王继业,杨喜晴,皇涛,宋克兴. Cr8合金钢热变形行为及位错密度演变规律[J]. 吉林大学学报(工学版), 2020, 50(1): 91-99.
[7] 王金国,任帅,闫瑞芳,黄恺,王志强. TiC颗粒对铸态球墨铸铁组织和力学性能的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 2010-2018.
[8] 佟鑫,张雅娇,黄玉山,胡正正,王庆,张志辉. 选区激光熔化304L不锈钢的组织结构及力学性能分析[J]. 吉林大学学报(工学版), 2019, 49(5): 1615-1621.
[9] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[10] 徐戊矫,刘承尚,鲁鑫垚. 喷丸处理后6061铝合金工件表面粗糙度的模拟计算及预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1280-1287.
[11] 李于朋,孙大千,宫文彪. 6082⁃T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报(工学版), 2019, 49(3): 836-841.
[12] 关庆丰,张福涛,彭韬,吕鹏,李姚君,许亮,丁佐军. 含硼、钴9%Cr耐热钢的热变形行为[J]. 吉林大学学报(工学版), 2018, 48(6): 1799-1805.
[13] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[14] 庄蔚敏, 赵文增, 解东旋, 李兵. 超高强钢/铝合金热铆连接接头性能[J]. 吉林大学学报(工学版), 2018, 48(4): 1016-1022.
[15] 关庆丰, 董书恒, 郑欢欢, 李晨, 张从林, 吕鹏. 强流脉冲电子束作用下45#钢表面Cr合金化[J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!