吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (9): 2620-2630.doi: 10.13229/j.cnki.jdxbgxb.20240015

• 交通运输工程·土木工程 • 上一篇    

水稻秸秆灰对混凝土抗压性能及微观结构的影响

王福成1(),赵欣荣2,田家冰2,解国梁2,周立明3()   

  1. 1.黑龙江八一农垦大学 工程学院,黑龙江 大庆 163319
    2.黑龙江八一农垦大学 土木水利学院,黑龙江 大庆 163319
    3.吉林大学 机械与航空航天工程学院,长春 130022
  • 收稿日期:2024-01-04 出版日期:2024-09-01 发布日期:2024-10-28
  • 通讯作者: 周立明 E-mail:fuchengwang@byau.edu.cn;lmzhou@jlu.edu.cn
  • 作者简介:王福成(1979-),男,副教授,博士.研究方向:结构工程、力学分析,混凝土材料性能分析.E-mail:fuchengwang@byau.edu.cn
  • 基金资助:
    国家自然科学基金项目(51975243);博士科研启动基金项目(XDB202205);三纵三横项目(ZRCPY202202)

Influence of rice straw ash on compressive properties and microstructure of concrete

Fu-cheng WANG1(),Xin-rong ZHAO2,Jia-bing TIAN2,Guo-liang XIE2,Li-ming ZHOU3()   

  1. 1.College of Engineering,Heilongjiang Bayi Agricultural University,Daqing 163319,China
    2.College of Civil Engineering and Water Conservancy,Heilongjiang Bayi Agricultural University,Daqing 163319,China
    3.College of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
  • Received:2024-01-04 Online:2024-09-01 Published:2024-10-28
  • Contact: Li-ming ZHOU E-mail:fuchengwang@byau.edu.cn;lmzhou@jlu.edu.cn

摘要:

为探究水稻秸秆灰对普通混凝土性能的影响规律,以不同养护天数和不同取代率(0%、5%、10%、15%、20%)的水稻秸秆灰混凝土为研究对象进行受压试验,以本构关系、峰值应力、峰值应变、弹性模量、泊松比为评价指标,揭示水稻秸秆灰对混凝土性能的影响规律,提出并建立了水稻秸秆灰混凝土本构模型,利用有限元法分析水稻秸秆灰混凝土试件受压破坏形态,通过扫描电子显微镜进行微观分析,结果表明:对比普通混凝土,随着取代率的增加,养护28 d的水稻秸秆灰混凝土应力-应变曲线有明显区别,峰值应力、峰值应变均有不同程度下降;养护128 d时曲线稍有变化,峰值应力、峰值应变均有不同程度增加,取代率5%时峰值应变提高12.24%,且长期强度最好。扫描电子显微镜图像分析表明:水稻秸秆灰中的二氧化硅可与水化产物反应,促进后期强度。研究结果可为水稻秸秆灰混凝土工业化应用提供技术支持,为生物质发电厂生产的水稻秸秆灰副产物利用以促进农业循环、增加农业收入提供了理论依据。

关键词: 土木工程, 水稻秸秆灰混凝土, 本构关系, 微观分析

Abstract:

In order to explore the influence of rice straw ash on the properties of ordinary concrete, the compression test was carried out with rice straw ash concrete with different curing days and different substitution rates (0%, 5%, 10%, 15%, 20%) as the research object. Poisson's ratio is used as an evaluation index to reveal the influence of rice straw ash on the properties of concrete, a constitutive model of rice straw ash concrete is proposed and established, the compressive failure mode of rice straw ash concrete specimens is analyzed by finite element method, and the microscopic analysis is carried out by scanning electron microscope, the results show that compared with ordinary concrete, with the increase of substitution rate, the stress-strain curve of rice straw ash concrete cured for 28 days is significantly different, and the peak stress, The peak strain decreased to varying degrees, the curve changed slightly after 128 days of curing, the peak stress and peak strain increased to different degrees, and the peak strain increased by 12.24% when the substitution rate was 5%, and the long-term strength was the best. The results of this study can provide technical support for the industrial application of rice straw ash concrete, and provide a theoretical basis for the utilization of rice straw ash by-products produced by biomass power plants to promote agricultural cycle and increase agricultural income.

Key words: civil engineering, rice straw ash concrete, constitutive relation, microstructure analysis

中图分类号: 

  • TB332

表 1

水泥及水稻秸秆灰化学组成 (%)"

材料SiO2K2ONa2OCaOMgOSO3P2O5Fe2O3AI2O3Other
水泥21.08--64.591.291.89-5.685.47-
水稻秸杆灰76.8811.050.854.371.692.691.660.350.270.19

表 2

水稻秸秆灰混凝土配合比"

试件编号取代率/%C/(kg·m-3RSA/(kg·m-3W/(kg·m-3S/(kg·m-3W/BNCA/(kg·m-3WRA/(kg·m-3
1036001441890.43512
25342181441890.43512
310324361441890.43512
415306541441890.43512
520288721441890.43512

图1

碎石、砂子、水泥及RSA图"

图2

混凝土标准养护箱与强度拉压试验一体机图"

图3

水稻秸秆灰XRD谱图"

图4

水稻秸秆灰混凝土单轴受压应力-应变曲线(28、128 d)"

图5

峰值应力与取代率的关系"

图6

峰值应力与龄期的关系"

图7

峰值应变与取代率的关系"

图8

弹性模量与取代率的关系"

图9

水稻秸秆灰混凝土单轴受压本构关系拟合曲线"

图10

峰值应力与取代率的关系图"

图11

峰值应变与取代率的关系图"

图12

水稻秸秆灰混凝土的模型图、总变形图、屈服破坏图"

图13

水稻秸秆灰混凝土的微观形貌SEM图像(28 d)"

图14

水稻秸秆灰混凝土的微观形貌SEM图像(128 d)"

1 Evi Aprianti S. A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production-a review part II[J]. Journal of Cleaner Production,2017,142:4178-4194.
2 许鹏,许昌东,王正君,等. 生物质秸秆灰活性分析及对混凝土力学特性的影响[J]. 混凝土,2020(3):108-112, 116.
Xu Peng, Xu Chang-dong, Wang Zheng-jun, et al.Analysis of biomass straw ash activity and its influence on the mechanical characteristics of concre-te[J]. Concrete, 2020 (3): 108-112, 116.
3 刘先南,王珂,李学军.双掺纳米二氧化钛和秸秆灰对混凝土力学及微观特性试验研究[J].混凝土,2023(6):125-129, 133.
Liu Xian-nan, Wang Ke, Li Xue-jun. Experimentalstudy on the mechanics and microscopic characteristics of concrete with double nanodoped titanium dioxide and straw ash[J]. Concrete, 2023 (6):125-129, 133.
4 张韦,刘超,刘化威,等. 基于孔体积分形维数的稻壳灰混凝土冻融损伤劣化机制[J]. 复合材料学报,2023,40(8):4733-4744.
Zhang Wei, Liu Chao, Liu Hua-wei, et al. The d-eterioration mechanism of rice husk ash concreteb-ased on hole volume fractal dimension[J]. Journaof Composite Materials, 2023,40(8):4733-4744.
5 汪知文,李碧雄.稻壳灰应用于水泥混凝土的研究进展[J].材料导报,2020,34(9):9003-9011.
Wang Zhi-wen, Li Bi-xiong. Progress of the application of rice husk ash to cement concrete [J]. Materials Reports, 2020,34(9):9003-9011.
6 王淑娟,金玉杰.秸秆灰理化特性及作为混凝土掺和料可行性[J].非金属矿,2020,43(2):30-33.
Wang Shu-juan, Jin Yu-jie. Physicochemical characteristics of straw ash and its feasibility as a concrete admixture [J]. Non-Metallic Mines, 2020,43 (2): 30-33.
7 韦京利,李舒阳,钟福文,等.生物质灰混凝土抗压强度的多因素计算模型[J].混凝土,2021(9):63-68, 72.
Wei Jing-li, Li Shu-yang, Zhong Fu-wen, et al. Multifactor calculation model of the compressive strength of biomass ash concrete[J]. Concrete, 2021(9): 63-68, 72.
8 许鹏,王正君,魏凌傲,等.玉米秸秆灰生态多孔混凝土抗冻性能试验研究[J].水利科学与寒区工程,2018,1(8):6-10.
Xu Peng, Wang Zheng-jun, Wei Ling-ao,et al. Study on the resistance of ash-born porous concrete in corn year after year[J]. Hydro Science and Cold Zone Engineering, 2018,1 (8): 6-10.
9 Amin M N, Murtaza T, Shahzada K,et al. Pozzolanic potential and mechanical performance of wheat straw ash incorporated sustainable concrete[J]. Sustainability,2019,11(2) :1-20.
10 .通用硅酸盐水泥 [S].
11 白兆兴,曹建峰,林鹏云,等.秸秆类生物质燃烧动力学特性实验研究[J].能源研究与信息,2009,25(3):130-137.
Bai Zhao-xing, Cao Jian-feng, Lin Peng-yun, et al. Experimental study on the combustion kinetics of straw biomass[J]. Energy Research and Information, 2009,25 (3): 130-137.
12 .固体生物质燃料灰成分测定方法 [S].
13 .混凝土物理力学性能试验方法标准 [S].
14 李静,王哲.真三轴加载条件下混凝土的力学特性[J].吉林大学学报:工学版,2017,47(3):771-777.
Li Jing, Wang Zhe. Mechanical characteristics of concrete under true triaxial loading condition[J]. Journal of Jilin University(Engineering and Technology Edition), 2017,47(3):771-777.
15 柳艳杰,金明山,张晓东,等.再生混凝土冻融作用下强度损伤研究[J].黑龙江大学工程学报,2020,11(3):23-27.
Liu Yan-jie, Jin Ming-shan, Zhang Xiao-dong, et al. Study on strength damage under freezing and thawing of reclaimed concrete[J]. Journal of Engineering of Heilongjiang University, 2020,11(3):23-27.
16 林强,刘赞群,禹雷,等.乳化沥青橡胶混凝土的力学性能[J].复合材料学报,2023,40(3):1560-1568.
Lin Qiang, Liu Zan-qun, Yu Lei, et al. Mechanical properties of emulsified asphalt rubber concrete[J]. Journal of Composite Materials, 2023,40(3):1560-1568.
17 李舒阳,陈正,韦京利,等.三乙醇胺助磨剂对蔗渣灰颗粒特性及蔗渣灰砂浆性能的影响[J].硅酸盐通报,2022,41(3):931-939.
Li Shu-yang, Chen Zheng, Wei Jing-li, et al.Characteristics of triethanolamine-assisted grinding slag ash and film of sugarcane ash performance[J]. Bulletin of the Chinese Ceramic Society, 2022, 41 (3): 931-939.
18 Kazmi S M S, Munir M J, Patnaikuni I,et al. Pozzolanic reaction of sugarcane bagasse ash and its role in controlling alkali silica reaction[J]. Construction and Building Materials,2017,153(30):1010.
19 Jagadesh P, Ramachandramurthy A, Murugesan R. Evaluation of mechanical properties of sugar cane bagasse ash concrete[J]. Construction and Building Materials,2018,176(10):608-617.
20 刘勇,冯竟竟,于雷,等.生物质灰对水泥硬化浆体抗压强度影响的试验研究[J].硅酸盐通报,2017,36(5):1718-1722.
Liu Yong, Feng Jing-jing, Yu Lei, et al.Study on the influence of hardening body resistance of bio-ash cement slurry[J]. Bulletin of the Chinese Ceramic Society,2017, 36(5): 1718-1722.
21 于本田,李彦宵,张占旭,等.不同石粉及掺量对高延性工程水泥基复合材料的性能影响[J/OL].[2024-10-22].
22 Hakeem I Y, Amin M, Agwa I S, et al. Ultra-high-performance concrete properties containing rice straw ash and nano eggshell powder[J]. Case Studies in Construction Materials,2023,19: No.e02291.
23 Fadi A, Osama Z, Rebeca M, et al. Ultra-high-performance fiber-reinforced sustainable concrete modified with silica fume and wheat straw ash[J]. Journal of Materials Research and Technology,2023,24: 6118-6139.
24 潘素明. 混凝土抗冻耐久性的数值计算研究[J].水利与建筑工程学报, 2022, 20(5): 68-74.
Pan Su-ming. The value calculation of the durability of concrete[J]. Journal of Water Conservancy and Construction Engineering, 2022,20(5): 68-74.
25 许鹏, 王正君, 康浩. 秸秆灰基混凝土抗压强度及净水特性试验研究[J]. 森林工程, 2019, 35(1): 107-112.
Xu Peng, Wang Zheng-jun, Kang Hao.Study on resistance andwater characteristics of hot ash-based concrete[J].Forest Engineering, 2019, 35(1): 107-112.
26 Carreira D J, Chu K H. Stress-strain relationship for plain concrete in compression[J]. Journal Proceedings, 1985, 82(6): 797-804.
27 Wee T H, Chin M S, Mansur M A. Stress-strain relationship of high-strength concrete in compression[J]. Journal of Materials in Civil Engineering, 1996, 8(2): 70-76.
28 过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究[J].建筑结构学报, 1982(1): 1-12.
Guo Zhen-hai, Zhang Xiu-qin, Zhang Da-cheng, et al. Experimental study on the full stress-strain curve of concrete [J].Journal of Building Structures,1982(1): 1-12.
29 刘海峰, 陶仁光, 车佳玲, 等. 荷载和高温对沙漠砂混凝土单轴抗压性能影响[J/OL]. [2024-10-22].
30 Wang F C, Wang C, Yi S J. Strength and performance of straw ash cement mortar[J]. Revue des Composites et des Matériaux Avancés-Journal of Composite and Advanced Materials, 2019, 29(1): 15-20.
31 Naraindas B, Wan I M H, Kennedy Charles A,et al. Mechanical performance of concrete incorporating wheat straw ash as partialreplacement of cement[J]. Journal of Building Pathology and Rehabilitation,2021, 6(1): No.4.
32 解伟, 司先洋, 李树山, 等.均布荷载作用下高强钢筋混凝土深梁受剪性能研究及有限元分析[J].混凝土,2022(11): 1-5, 10.
Xie Wei, Si Xian-yang, Li Shu-shan, et al. Study on shear performance and finite element analysis of high strength reinforced concrete deep beam under uniform cloth load[J]. Concrete, 2022(11): 1-5, 10.
33 张梦琳, 张纪刚, 马哲昊, 等. 基于ANSYS/LS-DYNA的人防墙抗冲击性能研究[J]. 青岛理工大学学报, 2023, 44(2): 67-76.
Zhang Meng-lin, Zhang Ji-gang, Ma Zhe-hao, et al. Study on impact resistance of civil air defense wall based on ANSYS / LS-DYNA[J]. Journal of Qingdao University of Technology, 2023,44(2): 67-76.
34 狄胜同, 贾超, 乔卫国, 等. 橡胶集料混凝土细观损伤特性的加载速率效应[J].吉林大学学报: 工学版,2019, 49(6): 1900-1910.
Di Sheng-tong, Jia Chao, Qiao Wei-guo,et al. Loading rate effect of meso-damage characteristics of crumb rubber concrete[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6):1900-1910.
[1] 冯琼,田浩正,乔宏霞,念腾飞,韩文文. 自然暴露与盐雾加速环境下钢筋混凝土劣化规律及等效关系[J]. 吉林大学学报(工学版), 2024, 54(2): 494-505.
[2] 闫清峰,张纪刚,王涛,陈德刚,郁有升,杨迎春. 预制预装修模块化建筑连接节点抗震性能[J]. 吉林大学学报(工学版), 2023, 53(2): 505-514.
[3] 陈伟宏,陈艳,洪秋榕,崔双双,颜学渊. BRBs加固震损装配式混凝土框架结构抗震性能试验[J]. 吉林大学学报(工学版), 2022, 52(8): 1817-1825.
[4] 何兆益,李金凤,周文,官志桃. 多孔沥青混合料的动态模量及其预估模型[J]. 吉林大学学报(工学版), 2022, 52(6): 1375-1385.
[5] 谷拴成,聂红宾. 极温冻融-荷载作用下碳纤维复合材料修复试件损伤分析[J]. 吉林大学学报(工学版), 2021, 51(6): 2108-2120.
[6] 周靖,黎亚军,赵卫锋,罗宗健,补国斌. 胶合竹板-钢管约束收尘石粉混凝土柱的偏压性能[J]. 吉林大学学报(工学版), 2021, 51(6): 2096-2107.
[7] 文畅平,任睆遐. 基于Lade模型的生物酶改良膨胀土双屈服面本构关系[J]. 吉林大学学报(工学版), 2021, 51(5): 1716-1723.
[8] 张广泰,张路杨,邢国华,曹银龙,易宝. 钢-聚丙烯混杂纤维混凝土剪力墙抗震性能[J]. 吉林大学学报(工学版), 2021, 51(3): 946-955.
[9] 杜瑞锋,裴向军,贾俊,张晓超,陈俊宇,张国华. 多次冲击下砂岩粘弹性损伤本构关系[J]. 吉林大学学报(工学版), 2021, 51(2): 638-649.
[10] 许卫晓,程扬,杨伟松,鞠佳昌,于德湖. RC框架⁃抗震墙并联结构体系拟静力试验[J]. 吉林大学学报(工学版), 2021, 51(1): 268-277.
[11] 单德山,张潇,顾晓宇,李乔. 斜拉索悬链线构形的伸长量解析计算方法[J]. 吉林大学学报(工学版), 2021, 51(1): 217-224.
[12] 刘柳,冯卫星. 基于NNBR模型的隧道盾构施工地表沉降实测与计算分析[J]. 吉林大学学报(工学版), 2021, 51(1): 245-251.
[13] 薛素铎,鲁建,李雄彦,刘人杰. 跳格布置对环形交叉索桁结构静动力性能的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1687-1697.
[14] 王勃,董元正,董丽欣. 基于短期风速资料的基本风压计算方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1739-1746.
[15] 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!