吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3505-3512.doi: 10.13229/j.cnki.jdxbgxb.20230184

• 交通运输工程·土木工程 • 上一篇    下一篇

基于手环数据的愤怒驾驶行为实时检测方法

牛世峰1,2(),于士杰2,刘彦君2,马冲2   

  1. 1.长安大学 汽车运输安全保障技术交通行业重点实验室,西安 710064
    2.长安大学 汽车学院,西安 710064
  • 收稿日期:2023-03-01 出版日期:2024-12-01 发布日期:2025-01-24
  • 作者简介:牛世峰(1982-),男,教授,博士.研究方向:交通安全,智能交通,驾驶人行为分析.E-mail:nsf530@chd.edu.cn
  • 基金资助:
    国家重点研发计划项目(2019YFB1600500);商用重卡安全与节能智能辅助平台“科学家+工程师”队伍项目

Real-time detection method of angry driving behavior based on bracelet data

Shi-feng NIU1,2(),Shi-jie YU2,Yan-jun LIU2,Chong MA2   

  1. 1.Key Laboratory of Automotive Transportation Safety Assurance Technology for Transportation Industry,Chang'an University,Xi'an 710064,China
    2.School of Automobile,Chang'an University,Xi'an 710064,China
  • Received:2023-03-01 Online:2024-12-01 Published:2025-01-24

摘要:

利用大众普遍使用的智能手环设计了驾驶人愤怒驾驶行为检测方法,为愤怒驾驶行为有效监测提供了新的途径和方法。本文招聘50名驾驶人开展模拟驾驶实验,设计了引发愤怒的模拟驾驶场景,利用手环采集数据获取心率指标HR和RR.mean、SDNN、RMSSD、PNN50、SDSD、HF、LF、LF/HF八个心率变异性(HRV)指标,对采集指标与愤怒驾驶行为进行关联研究,筛选显著性影响指标,利用支持向量机(SVM)、K-近邻(KNN)和线性判别分析(LDA)3种方法建立愤怒驾驶行为检测模型,并对其进行验证。结果表明:KNN算法的模型愤怒识别效果最好,对愤怒强度识别的准确率能达到75%,对愤怒状态识别的准确率为86%。结果表明:可穿戴式设备(智能手环)可以合理地检测驾驶人的愤怒情绪状态及愤怒情绪强度。

关键词: 载运工具运用工程, 愤怒驾驶行为, 机器学习, 智能手环, 心率变异性

Abstract:

A method for detecting drivers' angry driving behavior has been designed using widely used popular smart bracelet, which provides a new way and method for effective monitoring of angry driving behavior. 50 drivers were recruited to conduct a simulated driving experiment, and a simulated driving scene that caused anger was designed. Then, heart rate index HR and eight heart rate variability (HRV) indexes such as RR.mean, SDNN, RMSSD, PNN50, SDSD, HF, LF and LF/HF obtained from bracelet collection data were used to study the correlation between the acquisition indexes and the angry driving behavior, and screen the significant influence indexes Finally, using three methods, namely support vector machine (SVM), K-nearest neighbor (KNN) and linear discriminant analysis (LDA), established and verified the detection model of angry driving behavior. The results show that the model based on KNN algorithm has the best performance on anger recognition. The accuracy of anger intensity recognition can reach 75%, and the accuracy of anger state recognition is 86 %. The results show that the wearable device (smart bracelet) can reasonably detect the driver 's anger state and anger intensity.

Key words: vehicle application engineering, anger driving behavior, machine learning, smart bracelet, heart rate variability

中图分类号: 

  • U492.8

图1

智能手环及心电采集App"

图2

驾驶模拟系统组成示意图"

图3

三联屏汽车驾驶模拟器"

图4

问卷各题得分等于1和大于等于4的人数"

表1

愤怒诱导实验场景"

正常情绪实验场景愤怒诱导实验场景
道路顺畅且无其他车辆干扰的城市道路,天气条件正常,能见度清晰,双向四车道,限速为60 km/h,相对愤怒诱导场景进行设置A:周边车辆抢道加塞
B:交通拥挤
C:等红灯
D:前车启动慢

表2

愤怒驾驶行为备选检测指标"

特征类型符号含义
心率HR/(次·min-1-

HRV

时域特征

RR.mean/msRR间期均值
SDNN/msRR间期标准差
RMSSD/msRR间期差值均方根
NN50/次RR间期大于50 ms的个数
PNN50/%NN50除以NN间期总数的比例

HRV

频域特征

LF/ms2低频功率(0.04~0.15 Hz)
HF/ms2高频功率(0.15~0.4 Hz)
LF/HFLF和HF的比值

非线性

指标

SD1表示垂直于标识线点的标准偏差
SD2表示的同一条直线的标准偏差
SD2/SD1横纵标准偏差比值

图5

Poincaré图"

表3

不同愤怒等级下愤怒驾驶行为检测指标差异性检测结果"

指标卡方自由度渐近显著性
HR155.1142.000
RR.mean98.1752.000
SDNN10.6442.005
RMSSD22.9422.000
PNN5014.4602.001
SD27.70220.026
SD11.98620.159
SD2/SD17.90020.005
LF0.21520.834
HF78.04620.000
LF/HF4.85320.063

表4

评价指标及公式"

指标公式
TPRTPR=TPTP+FN×100%
FPRFPR=FPTN+FP×100%
PPAPPA=TPTP+FP×100%
F1F1=2×PPA×TPRTPR+PPA
ACCACC=TP+TNTP+FP+FN+FP×100%
AUCAUC=iUranki-M×1+M2M×N

表5

区分愤怒等级的愤怒驾驶行为检测模型效果"

模型指标TPRPPAF1FPR
SVM正常0.9090.8330.8700.190
轻微0.6670.7500.7060.171
强烈0.6000.480.5330.121
KNN正常0.9010.8260.8620.184
轻微0.8120.7200.7630.242
强烈0.8250.8250.8250.033
LDA正常0.8350.8150.8240.181
轻微0.8720.6670.7560.331
强烈0.5000.9520.6560.005

表6

区分愤怒等级的愤怒驾驶行为检测各模型检测效果"

评价指标SVMKNNLDA
TPR0.7250.8460.736
FPR0.1610.1530.172
PPA0.6880.7900.811
F1 score0.7030.8170.745
AUC0.9400.9400.940
ACC0.7340.7590.737

图6

各分类器对两种驾驶愤怒状态的识别效果"

表7

不区分愤怒等级的愤怒驾驶行为检测各模型检测效果"

评价指标SVMKNNLDA
TPR0.8760.8930.785
FPR0.1020.1660.121
PPA0.8690.8060.833
F1 score0.8720.8470.809
ACC0.8880.8600.838
AUC0.9600.9400.930
1 陈安光. 浅议驾驶员情绪对安全行车的影响[J]. 现代交通管理, 2001 (6): 35-35.
Chen An-guang. A brief discussion on the influence of driver's emotion on safe driving[J]. Modern Traffic Management, 2001 (6): 35-35.
2 Blanchette I, Richards A. Reasoning about emotional and neutral materials: is logic affected by emotion?[J]. Psychological Science, 2004, 15(11): 745-752.
3 Mesken J, Hagenzieker M P, Rothengatter T, et al. Frequency, determinants, and consequences of different drivers´ emotions: an on-the-road study using self-reports, (observed) behaviour, and physiology[J].Transportation Research Part F Traffic Psychology & Behaviour, 2007, 10(6): 458-475.
4 Lajunen T, Parker D. Are aggressive people aggressive drivers? A study of the relationship between self-reported general aggressiveness, driver anger and aggressive driving[J]. Accident Analysis & Prevention, 2001, 33(2): 243-255.
5 Wells-Parker E, Ceminsky J, Hallberg V, et al. An exploratory study of the relationship between road rage and crash experience in a representative sample of US drivers[J]. Accident Analysis & Prevention, 2002, 34(3): 271-278.
6 Stephens A N, Groeger J A. Anger-congruent behaviour transfers across driving situations[J]. Cognition & Emotion, 2011, 25(8): 1423-1438.
7 Paschero M, Del Vescovo G, Benucci L, et al. A real time classifier for emotion and stress recognition in a vehicle driver[C]∥2012 IEEE International Symposium on Industrial Electronics, New York, USA, 2012: 1690-1695.
8 Kolli A, Fasih A, Al Machot F, et al. Non-intrusive car driver's emotion recognition using thermal camera[C]∥2011 IEEE Intellige Proceedings of the Joint INDS'11 & ISTET'11nt Vehicles Symposium. New York, USA, 2011:No.6024802.
9 Tawari A, Trivedi M. Speech based emotion classification framework for driver assistance system[C]∥2010 IEEE Intellige Proceedings of the Joint INDS'11 & ISTET'11nt Vehicles Symposium, New York, USA, 2010: 174-178.
10 Jones C M. Using Paralinguistic Cues in Speech to Recognise Emotions in Older Car Drivers[M].Berlin:Springer-Verlag, 2008.
11 Gunes H, Piccardi M. Fusing face and body gesture for machine recognition of emotions[C]∥ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, New York, USA, 2005: 306-311.
12 Kessous L, Castellano G, Caridakis G. Multimodal emotion recognition in speech-based interaction using facial expression, body gesture and acoustic analysis[J]. Journal on Multimodal User Interfaces, 2010, 3: 33-48.
13 牛晓伟, 刘光远. 基于遗传算法的生理信号情感识别[J]. 西南大学学报: 自然科学版, 2007 29(9):134-138.
Niu Xiao-wei, Liu Guang-yuan. Emotion recognition with physiological signals based on genetic algorithm[J]. Journal of Southwest University(Natural Science Edition), 2007, 29(9): 134-138.
14 Katsis C D, Katertsidis N, Ganiatsas G, et al. Toward emotion recognition in car-racing drivers: a biosignal processing approach[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 2008, 38(3): 502-512.
15 万平, 吴超仲, 林英姿, 等. 基于置信规则库的驾驶人愤怒情绪识别模型[J]. 交通运输系统工程与信息, 2015, 15(5): 96-102.
Wan Ping, Wu Chao-zhong, Lin Ying-zi, et al. A recognition model of driving anger based on belief rule base[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5): 96-102.
16 Lisetti C L, Nasoz F. Using noninvasive wearable computers to recognize human emotions from physiological signals[J]. EURASIP Journal on Advances in Signal Processing, 2004, 2004(11): 1672-1687.
17 严利鑫. 驾驶愤怒情绪诱导实验方法研究及应用[D]. 武汉: 武汉理工大学交通与物流工程学院, 2014.
Yan Li-xin. The research and application of the driving anger induced method[D]. Wuhan: School of Transportation and Logistics Engineering, Wuhan University of Technology, 2014.
18 Kreibig S D. Autonomic nervous system activity in emotion: a review[J]. Biological Psychology, 2010, 84(3): 394-421.
[1] 张磊,焦晶,李勃昕,周延杰. 融合机器学习和深度学习的大容量半结构化数据抽取算法[J]. 吉林大学学报(工学版), 2024, 54(9): 2631-2637.
[2] 陈城,史培新,贾鹏蛟,董曼曼. 基于MK-LSTM算法的盾构掘进参数相关性分析及结构变形预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1624-1633.
[3] 付忠良,陈晓清,任伟,姚宇. 带学习过程的随机K最近邻算法[J]. 吉林大学学报(工学版), 2024, 54(1): 209-220.
[4] 耿庆田,刘植,李清亮,于繁华,李晓宁. 基于一种深度学习模型的土壤湿度预测[J]. 吉林大学学报(工学版), 2023, 53(8): 2430-2436.
[5] 潘恒彦,张文会,梁婷婷,彭志鹏,高维,王永岗. 基于MIMIC与机器学习的出租车驾驶员交通事故诱因分析[J]. 吉林大学学报(工学版), 2023, 53(2): 457-467.
[6] 袁伟,袁小慧,高岩,李坤宸,赵登峰,刘朝辉. 基于自然驾驶数据的电动公交踏板误操作辨识方法[J]. 吉林大学学报(工学版), 2023, 53(12): 3342-3350.
[7] 周丰丰,颜振炜. 基于混合特征的特征选择神经肽预测模型[J]. 吉林大学学报(工学版), 2023, 53(11): 3238-3245.
[8] 耿庆田,赵杨,李清亮,于繁华,李晓宁. 基于注意力机制的LSTM和ARIMA集成方法在土壤温度中应用[J]. 吉林大学学报(工学版), 2023, 53(10): 2973-2981.
[9] 段亮,宋春元,刘超,魏苇,吕成吉. 基于机器学习的高速列车轴承温度状态识别[J]. 吉林大学学报(工学版), 2022, 52(1): 53-62.
[10] 李洪雪,李世武,孙文财,李玮,郭梦竹. 重型危险品半挂列车行驶工况的构建[J]. 吉林大学学报(工学版), 2021, 51(5): 1700-1707.
[11] 李光松,李文清,李青. 基于随机性特征的加密和压缩流量分类[J]. 吉林大学学报(工学版), 2021, 51(4): 1375-1386.
[12] 朱小龙,谢忠. 基于机器学习的地理空间数据抽取算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1011-1016.
[13] 李阳,李硕,井丽巍. 基于贝叶斯模型与机器学习算法的金融风险网络评估模型[J]. 吉林大学学报(工学版), 2020, 50(5): 1862-1869.
[14] 方伟,黄羿,马新强. 基于机器学习的虚拟网络感知数据缺陷自动检测[J]. 吉林大学学报(工学版), 2020, 50(5): 1844-1849.
[15] 刘洲洲,尹文晓,张倩昀,彭寒. 基于离散优化算法和机器学习的传感云入侵检测[J]. 吉林大学学报(工学版), 2020, 50(2): 692-702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .