吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3558-3567.doi: 10.13229/j.cnki.jdxbgxb.20230076
Jian XIAO1(
),Jing-wei LIU1,Xin HU2(
),Xiao-gang QI3
摘要:
针对到达时间差定位(Time difference of arrival,TDOA)和到达角定位(Angle of arrival,AOA)联合定位,提出了基于准反射学习机制和并行机制改进的非洲秃鹫定位算法。改进的非洲秃鹫算法在对定位模型最大似然的适应度函数寻优和迭代过程中,引入准反射机制以丰富种群多样性和加快收敛速度,在一定程度上也平衡了探索和开发能力;引入并行机制,通过一个种群的最优个体指导另一种群,加快收敛速度,增强了寻优性能。实验结果看,将改进的非洲秃鹫算法与非洲秃鹫算法(AVOA)、改进的哈里斯鹰算法(IHHO)、混沌麻雀搜索优化算法(CSSOA)、鸽群优化算法(PIO)、疯狂自适应樽海鞘算法(CASSA)进行对比,在基准函数和定位模型的求解上,都表现出了更快的收敛速度、更准确的定位精度和更好的稳定性。
中图分类号:
| 1 | Wang G, Zhu W, Ansari N. Robust TDOA-based localization for IoT via joint source position and NLOS error estimation[J]. IEEE Internet of Things Journal, 2019, 6(5): 8529-8541. |
| 2 | Wang Y, Ho K C. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6524-6535. |
| 3 | Wang Y, Ho K C. Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings[J]. IEEE Transactions on Wireless Communications, 2017, 17(2): 1242-1254. |
| 4 | 岳俊升, 程钢, 邓超. 标签高度差的UWB室内定位方法[J]. 导航定位学报, 2019, 7(3): 44-50. |
| Yue Jun-sheng, Cheng Gang, Deng Chao. UWB indoor positioning method considering difference ofheight[J]. Journal of Navigation and Positioning,2019, 7(3): 44-50. | |
| 5 | 孔维炯, 丁志中, 方福柱. 基于TDOA的高精度无线定位算法分析与实现[J]. 合肥工业大学学报: 自然科学版, 2019, 42(6): 756-762. |
| Kong Wei-jiong, Ding Zhi-zhong, Fang Fu-zhu. Analisys and realization of high precision radio positioning algorithm based on TDOA[J]. Journal of Hefei University of Technology (Natural Science), 2019,42(6): 756-762. | |
| 6 | Wang G, Cai S, Li Y M, et al. A bias reduced nonlinear WLS method for TDOA /FDOA based source localization[J]. IEEE Transactions on Vehicular Technology, 2016,65 (10): 8603-8615. |
| 7 | 赵拥军, 赵勇胜, 赵闯. 基于正则化约束总体最小二乘的单站DOA-TDOA 无源定位算法[J]. 电子与信息学报, 2016, 38(9): 2336-2343. |
| Zhao Yong-jun, Zhao Yong-sheng, Zhao Chuang. Single-observer passive DOA-TDOA location based on regularized constrained total least squares[J]. Journal of Electronics & Information Technology,2016,38 (9): 2336-2343. | |
| 8 | 马一鸣, 石志东, 赵康.基于改进哈里斯鹰优化算法的TDOA 定位[J].计算机工程, 2020, 46(12): 179-184. |
| Ma Yi-ming, Shi Zhi-dong, Zhao Kang. TDOA localization based on improved Harris hawk optimization algorithm[J]. Computer Engineering,2020,46(12):179-184. | |
| 9 | 国强, 朱国会, 李万臣. 基于混沌麻雀搜索算法的TDOA/FDOA定位[J]. 吉林大学学报: 工学版,2023, 53(2): 593-600. |
| Guo Qiang, Zhu Guo-hui, Li Wan-chen. TDOA/FDOA localization based on chaotic sparrow search algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 593-600. | |
| 10 | 陈涛, 王梦馨, 黄湘松. 基于樽海鞘群算法的无源时差定位[J]. 电子与信息学报, 2018, 40(7): 1591-1597. |
| Chen Tao, Wang Meng-xin, Huang Xiang-song. Time difference of arrival passive location based on salp swarm algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1591-1597. | |
| 11 | 苟平章, 孙梦源, 刘学治,等. 基于天牛须搜索优化的TDOA三维节点定位算法[J].传感器与微系统,2022, 41(10): 141-144. |
| Gou Ping-zhang, Sun Meng-yuan, Liu Xue-zhi, et al. 3D node location algorithm based on optimization of BAS [J]. Transducer and Microsystem Technologies,2022, 41(10): 141-144. | |
| 12 | Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software,2016,95: 51-67. |
| 13 | Sm A, Smm B, Al A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. |
| 14 | Abbasi A, Firouzi B, Sendur P. On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks[J]. Engineering with Computers, 2021, 37(2): 1409-1428. |
| 15 | Nadimi-Shahraki M H, Taghian S, Mirjalili S,et al. EWOA-OPF: effective whale optimization algorithm to solve optimal power flow problem[J]. Electronics, 2021, 10(23): No.10232975. |
| 16 | Nadimi-Shahraki M H, Taghian S, Mirjalili S. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: No. 113917. |
| 17 | Fan Q, Chen Z, Xia Z. A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems[J]. Soft Computing, 2020,24(19): 14825-14843. |
| 18 | 王静静, 瞿少成, 李科林. 一种基于并行交叉遗传算法的二维不规则排样问题求解[J]. 计算机应用与软件, 2020, 37(7): 188-193. |
| Wang Jing-jing, Zhai Shao-cheng, Li Ke-lin. A two-dimensional irregular layout problem solving based on parallel cross genetic algorithm[J]. Computer Applications and Software, 2020, 37(7): 188-193. | |
| 19 | Abdollahzadeh B, Gharehchopogh F S, Mirjalili S. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 2021, 158: No.107408. |
| 20 | Tizhoosh H R. Opposition-based learning: a new scheme for machine intelligence[C]∥International Conference on International Conference on Computational Intelligence for Modelling, Control & Automation, Vienna, Austria, 2005: 695-701. |
| 21 | Rahnamayan S, Tizhoosh H R, Salama M. Quasi-oppositional differential evolution[C]∥2007 IEEE Congress on Evolutionary Computation, Piscataway,USA, 2007: 2229-2236. |
| 22 | Ewees A A, Elaziz M A, Houssein E H. Improved grasshopper optimization algorithm using opposition-based learning[J]. Expert Systems with Applications,2018,112(Dec.): 156-172. |
| 23 | Pan J S, Tian A Q, Chu S C,et al. TDOA location based on pigeon-inspired optimization algorithm in WSNs[C]∥International Conference on Genetic and Evolutionary Computing.Berlin: Springer, 2021: 724-733. |
| 24 | 张达敏, 陈忠云, 辛梓芸. 基于疯狂自适应的樽海鞘群算法[J]. 控制与决策, 2020, 35(9): 2112-2120. |
| Zhang Da-min, Chen Zhong-yun, Xin Zi-yun. Algorithm based on crazy self-adaptive salvia group[J]. Control and Decision, 2020, 35(9): 2112-2120. |
| [1] | 段锦,姚安妮,王震,于林韬. 改进的麻雀搜索算法优化无线传感器网络覆盖[J]. 吉林大学学报(工学版), 2024, 54(3): 761-770. |
| [2] | 苏育挺,王骥,赵玮,井佩光. 基于动态图卷积的图像情感分布预测[J]. 吉林大学学报(工学版), 2023, 53(9): 2601-2610. |
| [3] | 陈绵书,于录录,李晓妮,郑宏宇. 基于均匀ORB特征的回环检测算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2666-2675. |
| [4] | 国强,朱国会,李万臣. 基于混沌麻雀搜索算法的TDOA/FDOA定位[J]. 吉林大学学报(工学版), 2023, 53(2): 593-600. |
| [5] | 李厚杰,王法胜,贺建军,周瑜,李威,窦宇轩. 基于伪样本正则化Faster R⁃CNN的交通标志检测[J]. 吉林大学学报(工学版), 2021, 51(4): 1251-1260. |
| [6] | 蒋华伟,杨震,张鑫,董前林. 图像去雾算法研究进展[J]. 吉林大学学报(工学版), 2021, 51(4): 1169-1181. |
| [7] | 王德兴,吴若有,袁红春,宫鹏,王越. 基于多尺度注意力融合和卷积神经网络的水下图像恢复[J]. 吉林大学学报(工学版), 2021, 51(4): 1396-1404. |
| [8] | 金静,党建武,王阳萍,申东. 融合模糊统计纹理特征的多线索粒子滤波跟踪[J]. 吉林大学学报(工学版), 2021, 51(3): 1111-1120. |
| [9] | 郭继昌,乔珊珊. 基于深度图的水下图像复原[J]. 吉林大学学报(工学版), 2021, 51(2): 677-684. |
| [10] | 刘国华,周文斌. 基于卷积神经网络的脉搏波时频域特征混叠分类[J]. 吉林大学学报(工学版), 2020, 50(5): 1818-1825. |
| [11] | 王柯俨,王迪,赵熹,陈静怡,李云松. 基于卷积神经网络的联合估计图像去雾算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1771-1777. |
| [12] | 史再峰,李金卓,曹清洁,李慧龙,胡起星. 基于生成对抗网络的低剂量能谱层析成像去噪算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1755-1764. |
| [13] | 谌华,郭伟,闫敬文,卓文浩,吴良斌. 基于深度学习的SAR图像道路识别新方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1778-1787. |
| [14] | 张薇,韩勇,金铭,乔晓林. 基于托普利兹矩阵集重构的相干信源波达方向估计[J]. 吉林大学学报(工学版), 2020, 50(2): 703-710. |
| [15] | 程艳芬,姚丽娟,袁巧,陈先桥. 水下视频图像清晰化方法[J]. 吉林大学学报(工学版), 2020, 50(2): 668-677. |
|