吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3158-3167.doi: 10.13229/j.cnki.jdxbgxb.20230065
• 车辆工程·机械工程 • 上一篇
Yu-mei LIU1(
),Ting HU1,Jiao-jiao ZHUANG2,Jia-xiang SHENG1,Dian-mai ZHOU3
摘要:
为改善变轨距列车不同轨距线路上的运行性能,采用基于PCA赋权的信噪比方法对悬挂参数进行优化设计。基于SIMPACK建立1 435/1 520 mm变轨距列车的动力学仿真模型,采用参数试验法结合Pareto图筛选出关键悬挂参数,基于最优拉丁超立方采样方法选取200组关键悬挂参数进行仿真试验,对输出的动力学指标进行加权信噪比分析,通过主成分分析对子目标权重进行赋值,得到变轨距列车综合两种轨距下的关键悬挂参数的优化值。对优化结果进行试验验证表明:优化后的车辆在两种轨距线路上的动力学性能均满足标准要求,且具有更好的动力学性能。
中图分类号:
| 1 | 谭皓尹, 黄运华, 李芾, 等. 丝绸之路经济带背景下变轨距转向架的发展研究[J]. 机械工程与自动化, 2017(2): 217-219. |
| Tan Hao-yin, Huang Yun-hua, Li Fu, et al. Gauge-changeable bogie study under background of silk road economic belt[J]. Mechanical Engineering & Automation, 2017(2): 217-219. | |
| 2 | 李典易, 陈勇. 亚欧大陆跨境铁路的轨距问题[J]. 社会科学文摘, 2020(2): 39-41. |
| Li Dian-yi, Chen Yong. The break-of-gauge problem of cross-border railways on the Eurasian continent[J]. The Journal of International Studies, 2020(2): 39-41. | |
| 3 | 周殿买, 徐彬, 黄志辉, 等. 400 km/h高速动车组变轨距走行系统关键技术研究[J]. 机车电传动, 2020, 2020(2): 23-25. |
| Zhou Dian-mai, Xu Bin, Huang Zhi-hui, et al. Key technology design of variable gauge running system for 400 km/h high-speed EMU[J]. Electric Drive for Locomotives, 2020(2): 23-25. | |
| 4 | Usamah R, Kang D, Ha Y D, et al. Structural evaluation of variable gauge railway[J]. Infrastructures, 2020, 5(10): 5100080. |
| 5 | Jiang J Z, Matamoros S, Alejandra Z, et al. Passive suspensions incorporating inerters for railway vehicles[J]. Vehicle System Dynamics, 2012, 50(1): 263-276. |
| 6 | Yao Y, Li G, Sardahi Y, et al. Stability enhancement of a high-speed train bogie using active mass inertial actuators[J]. Vehicle System Dynamics, 2019, 57(3): 389-407. |
| 7 | Qiu Z C, Han S C, Na J, et al. Vertical suspension optimization for a high-speed train with PSO intelligent method[J]. Computational Intelligence and Neuroscience, 2021 (2021): 1526792. |
| 8 | Chen M L, He X S, Cao J W, et al. Modeling of vertical vibration system of high speed train and optimization of suspension parameters[C]∥ 3rd International Conference on Control and Robots, Tokyo, Japan, 2020: 26-29. |
| 9 | Zou H, Wu Q F, Zou X L. Research on optimization design of suspension parameters of railway vehicle bogies based on surrogate model[J]. Multimedia Tools and Applications, 2022 (2022): s11042022140224. |
| 10 | Sun Y, Zhou J S, Gong D, et al. A new vibration absorber design for under-chassis device of a high-speed train[J]. Shock and Vibration, 2017 (2017): 1-8. |
| 11 | Chen J, Wu Y J, Zhang L M, et al. Dynamic optimization design of the suspension parameters of car body-mounted equipment via analytical target cascading[J]. Journal of Mechanical Science and Technology, 2020, 34(5): 1957-1969. |
| 12 | Liu W L, Yang Y, Wang P P, et al. Metamodel-based robust collaborative optimization for the suspension parameters of rail vehicles[J]. Journal of the Chinese Institute of Engineers, 2019, 42(8): 643-652. |
| 13 | 姚远, 李广, 梁树林, 等. 基于健壮稳定性的高速列车悬挂参数优化匹配方法[J]. 铁道学报, 2021, 43(8): 35-44. |
| Yao Yuan, Li Guang, Liang Shu-lin, et al. Optimal matching method for suspension parameters of high-speed train bogie based on robust hunting stability[J]. Journal of the China Railway Society, 2021, 43(8): 35-44. | |
| 14 | 王红兵, 李国芳, 李炳劭, 等. 基于稳健试验设计的高速客车悬挂参数多目标优化[J]. 铁道机车车辆, 2020, 40(2): 25-29. |
| Wang Hong-bing, Li Guo-fang, Li Bing-shao, et al. Comprehensive optimization of suspension parameters of high-speed passenger trains based on taguchi method[J]. Railway Locomotive and Car, 2020, 40(2): 25-29. | |
| 15 | 赵树恩, 聂小芮, 陈文斌. 基于田口稳健设计的跨座式单轨车辆悬挂系统多参数优化[J]. 重庆交通大学学报: 自然科学版, 2021, 40(12): 136-142. |
| Zhao Shu-en, Nie Xiao-rui, Chen Wen-bin. Multi-parameter optimization of suspension system of straddle monorail vehicle based on taguchi robust design[J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(12): 136-142. | |
| 16 | 王攀攀, 杨岳, 易兵, 等. 面向运行稳定性的高速轨道车辆悬挂参数多目标稳健优化[J]. 铁道科学与工程学报, 2018, 15(12): 3021-3028. |
| Wang Pan-pan, Yang Yue, Yi Bing, et al. Multi-objective robust optimization of suspension parameters for high-speed rail vehicle[J]. Journal of Railway Science and Engineering, 2018, 15(12): 3021-3028. | |
| 17 | 王婷. 高速客车轴箱悬挂参数稳健优化设计[D]. 长沙: 中南大学交通运输工程学院, 2014. |
| Wang Ting. Robust optimization design on axlebox suspension parameters of high-speed passenger train[D]. Changsha: School of Traffic & Transportation Engineering, Central South University, 2014. | |
| 18 | 崔利通, 李国栋, 宋春元, 等. 高速动车组悬挂参数优化研究[J]. 铁道学报, 2021, 43(4): 42-50. |
| Cui Li-tong, Li Guo-dong, Song Chun-yuan, et al. Study on optimization of suspension parameters of high-speed EMU trains[J]. Journal of the China Railway Society, 2021, 43(4): 42-50. | |
| 19 | 金天贺, 刘志明, 任尊松, 等. 高速列车减振器组合阻尼特性效应研究[J]. 华南理工大学学报: 自然科学版, 2018, 46(9): 116-124. |
| Jin Tian-he, Liu Zhi-ming, Ren Zun-song, et al. Study of combination damping characteristics effect of high-speed train damper[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(9): 116-124. | |
| 20 | 金光, 徐腾养, 徐传波, 等. 高速列车二系横向刚度和横向阻尼参数优化分析[J]. 中国工程机械学报, 2021, 19(5): 384-389. |
| Jin Guang, Xu Teng-yang, Xu Chuan-bo, et al. Parameters optimization analysis of secondary lateral stiffness and secondary lateral damping of high speed train[J]. Chinese Journal of Construction Machinery, 2021, 19(5): 384-389. | |
| 21 | 缪炳荣, 方向华, 傅秀通. SIMPACK 动力学分析基础教程[M]. 成都: 西南交通大学出版社, 2008. |
| 22 | 石怀龙, 郭金莹, 王勇. 变轨距高速列车的动力学[J]. 机械工程学报, 2020, 56(20): 98-105. |
| Shi Huai-long, Guo Jin-ying, Wang-yong, et al. Dynamic performance of high-speed gauge-changeable railway vehicle[J].Journal of Mechanical Engineering, 2020, 56(20): 98-105. | |
| 23 | 庄娇娇. 高速变轨距列车动力学性能优化及半主动控制策略研究[D]. 长春: 吉林大学交通学院, 2019. |
| Zhuang Jiao-jiao. Research on dynamic performance optimization and semi-active control strategy of high-speed variable-gauge train[D]. Changchun: College of Transportation,Jilin University, 2019. | |
| 24 | 中铁第一勘察设计院集团有限公司. 铁路线路设计规范[M]. 北京: 中国铁道出版社, 2018. |
| 25 | . 机车车辆动力学性能评定及试验鉴定规范 [S]. |
| 26 | 盛佳香. 高速变轨距列车可变悬挂系统研究[D]. 长春: 吉林大学交通学院, 2022. |
| Sheng Jia-xiang. Research on variable suspension system of high-speed variable-gauge train[D]. Changchun: College of Transportation, Jilin University, 2022. | |
| 27 | 张剑. 基于代理模型技术的高速列车性能参数设计及优化[D]. 成都: 西南交通大学机械工程学院, 2015. |
| Zhang Jian. The high-speed train performance parameter design and optimization based on surrogate model technology[D]. Chengdu: School of Mechanical Engineering, Southwest Jiaotong University, 2015. |
| [1] | 吴飞,王鹏程,杨康. 基于PCA-SSA-XGBoost的车辆驾驶性评估[J]. 吉林大学学报(工学版), 2025, 55(1): 105-115. |
| [2] | 顿国强,吴星澎,纪欣鑫,张福利,纪文义,朱礼贵. 玉米条带摆管式撒肥装置设计及试验[J]. 吉林大学学报(工学版), 2024, 54(9): 2697-2707. |
| [3] | 余萍,赵康,曹洁. 基于优化A-BiLSTM的滚动轴承故障诊断[J]. 吉林大学学报(工学版), 2024, 54(8): 2156-2166. |
| [4] | 李房云,夏容,张怡欣. 考虑电池荷电状态的混合动力汽车复合电源协同控制[J]. 吉林大学学报(工学版), 2024, 54(4): 1114-1119. |
| [5] | 刘玉梅,盛佳香,庄娇娇,陈熔,赵大龙. 高速变轨距转向架结构优化及动力学性能分析与预测[J]. 吉林大学学报(工学版), 2024, 54(2): 453-460. |
| [6] | 宋世军,樊敏. 基于随机森林算法的大数据异常检测模型设计[J]. 吉林大学学报(工学版), 2023, 53(9): 2659-2665. |
| [7] | 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735. |
| [8] | 于贵申,陈鑫,武子涛,陈轶雄,张冠宸. AA6061⁃T6铝薄板无针搅拌摩擦点焊接头结构及性能分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1338-1344. |
| [9] | 应沛然,曾小清,沈拓,袁腾飞,宋海峰,王奕曾. 基于冗余工序编码的高速列车节能驾驶智能算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3404-3414. |
| [10] | 张勇飞,陈涛. 基于时间序列模糊分割的通信数据分类算法设计[J]. 吉林大学学报(工学版), 2023, 53(11): 3268-3273. |
| [11] | 蒋林,杨立,张文俊,张琼玉,吴艳霞. 在障碍物检测时对斜坡点云的检测处理算法[J]. 吉林大学学报(工学版), 2023, 53(11): 3221-3228. |
| [12] | 顿国强,刘文辉,吴星澎,毛宁,纪文义,马洪岩. 螺旋挤压式精量排肥器的仿真优化及试验[J]. 吉林大学学报(工学版), 2023, 53(10): 3026-3037. |
| [13] | 国强,李明松,周凯. 基于势距图与改进云模型的多模雷达分选[J]. 吉林大学学报(工学版), 2022, 52(8): 1904-1911. |
| [14] | 史瑞杰,戴飞,赵武云,刘小龙,瞿江飞,张锋伟. 丘陵山地胡麻联合收割机作业参数优化与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2746-2755. |
| [15] | 曹振,崔路瑶,雷斌,王婧旖,曹双胜. 城轨列车滚动轴承智能诊断的特征降维与随机森林方法[J]. 吉林大学学报(工学版), 2022, 52(10): 2287-2293. |
|
||