吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1705-1713.doi: 10.13229/j.cnki.jdxbgxb.20230812

• 计算机科学与技术 • 上一篇    下一篇

基于自选择架构网络的交通标志分类算法

文斌1,2(),丁弈夫1,杨超1(),沈艳军1,李辉3   

  1. 1.三峡大学 电气与新能源学院,湖北 宜昌 443002
    2.湖北省输电线路工程技术研究中心(三峡大学),湖北 宜昌 443002
    3.电子科技大学 航空航天学院,成都 611731
  • 收稿日期:2023-08-03 出版日期:2025-05-01 发布日期:2025-07-18
  • 通讯作者: 杨超 E-mail:wenbin_08@126.com;yangchao_0305@126.com
  • 作者简介:文斌(1985-),男,讲师,博士. 研究方向:数字视频信号处理E-mail: wenbin_08@126.com
  • 基金资助:
    国家自然科学基金项目(62273200);国家自然科学基金项目(61876097);湖北省输电线路工程技术研究中心研究基金项目(2022KXL03);湖北省自然科学基金联合基金项目(2024AFD409)

Self-selected architecture network for traffic sign classification

Bin WEN1,2(),Yi-fu DING1,Chao YANG1(),Yan-jun SHEN1,Hui LI3   

  1. 1.College of Electrical Engineering and New Energy,China Three Gorges University,Yichang 443002,China
    2.Hubei Provincial Engineering Technology Research Center for Power Transmission Line,Yichang 443002,China
    3.School of Aeronautics and Astronautics,University of Electronic Science and Technology of China,Chengdu 611731,China
  • Received:2023-08-03 Online:2025-05-01 Published:2025-07-18
  • Contact: Chao YANG E-mail:wenbin_08@126.com;yangchao_0305@126.com

摘要:

自动驾驶技术的实现需要对交通标识进行高精度的识别,但由于交通标识的相似度高、尺寸小且易受户外环境影响,实时精准检测变得具有挑战性。针对传统神经网络设计方式效率低下的问题,本文提出了自选择架构算法,可以自动调整网络结构以提高模型的性能和效率。该算法采用两阶段训练实现网络节点最优路径选择,同时对多损失函数权重超参数使用梯度传播进行训练,使用动态损失网络方案替代传统人工调参。实验结果表明,该算法在GTSRB数据集中实现了95.74%的准确率和146.58帧/s的检测速度,且模型参数量仅为0.46 Mb,可部署于移动设备。与传统手动设计静态网络相比,采用自学习架构模块可以降低实验成本,提高精度和性能,在不同环境下更容易实现更好的检测效果,其损失收敛速度也获得明显提升。

关键词: 交通标识图像分类, 深度学习, 自选择架构, 最优网络路径, 动态损失网络

Abstract:

The implementation of autonomous driving technology required high-precision recognition of traffic signs. However, due to their high similarity, small size, and vulnerability to outdoor environmental factors, achieving real-time and accurate detection posed significant challenges. In response to the limitations of traditional neural network design approaches, an algorithm based on self-selecting architecture was proposed to automatically adjust the network structure, thereby enhancing model performance and efficiency. The algorithm adopted a two-stage training approach to optimize the selection of network paths. Moreover, gradient propagation was employed to train the hyperparameters for multiple loss functions, replacing the conventional manual tuning with a dynamic loss network scheme. The results demonstrated that the proposed algorithm achieved an accuracy rate of 95.74% and a detection speed of 146.58 frames per second on the GTSRB dataset, while maintaining a model parameter size of only 0.46Mb, enabling deployment on mobile devices. Compared to the traditional manual design of static networks, the adoption of the self-learning architecture module not only reduced experimental costs but also improved accuracy and performance. Furthermore, it enabled superior detection outcomes in various environments and exhibited a noticeable enhancement in loss convergence speed.

Key words: traffic sign classification, deep learning, self-selecting architecture, optimal network path, dynamic loss network

中图分类号: 

  • TP391.4

图1

神经网络结构"

图2

模块最优路径选择示意图"

图3

节点间网络结构"

图4

两阶段网络训练流程"

图5

损失网络训练过程"

图6

GTSRB数据集各类别可视化"

图7

GTSRB训练集各类别构成分析"

图8

两阶段训练过程可视化"

图9

最优路径索引变化过程可视化分析"

表1

路径选择对比实验"

网络

模块

准确率

/%

帧数

/(帧·s-1

参数量/Mb批显存占用/Mb批训练时间/s
最优路径94.66146.580.46490.5825
路径一93.17146.270.44412.1426
路径二92.49145.440.47124.4124
路径三89.09186.110.2567.4222
路径四86.68195.170.2667.5422
加权路径95.1948.150.751 464.7457

表2

各损失函数准确率对比 (%)"

损失

函数

CrossEntropyLossFocalLossSoftmaxLossLabelSmoothedCrossEntropyLossHybridLoss

准确

率/s

95.4395.4795.6895.1595.74

图10

各损失函数训练损失值与准确率变化曲线"

表3

不同算法对比实验"

实验序号模型名称准确率/%帧数/(帧·s-1参数量/Mb批显存占用/Mb批训练时间/s
10最优路径95.74146.580.46490.5857
1Res2Net5085.0944.1822.64452.4955
2Res2Next5083.9449.2221.66460.2455
4ConvNeXt80.0668.9784.55985.6446
4SwinTransformer89.45105.1926.00401.44942
5EfficientNet-b088.4060.114.88206.4447
6EfficientNet-b490.6829.8816.81607.1078
7GhostNetV290.0451.289.10176.9150
8HorNet82.4129.9420.90488.1090
9FasterNet89.45112.0514.12262.4829

图11

算法准确率与帧数可视化对比"

图12

各类别分类精度可视化"

[1] Babi D, Babi D, Fioli M, et al.Analysis of market-ready traffic sign recognition systems in cars: a test field study[J].Energies, 2021, 14: 14123697.
[2] 冯润泽, 江昆, 于伟光, 等. 基于两阶段分类算法的中国交通标志牌识别 [J]. 汽车工程, 2022, 44(3): 434-441.
Feng Run-ze, Jiang Kun, Yu Wei-guang, et al. Chinese traffic sign recognition based on two-stage classification algorithm[J]. Automotive Engineering, 2022, 44(3): 434-441.
[3] Wang M, Liu R, Yang J, et al.Traffic sign three-dimensional reconstruction based on point clouds and panoramic images[J].Photogrammetric Record, 2022, 37(177): 87-110.
[4] Shen L, You L, Peng B, et al.Group multi-scale attention pyramid network for traffic sign detection[J].Neuro Computing, 2021, 452(6): 1-14.
[5] Liu Y, Peng J, Xue J H, et al. TSingNet: scale-aware and context-rich feature learning for traffic sign detection and recognition in the wild[J].Neurocomputing, 2021, 447(4): 10-22.
[6] Vashisht M, Kumar B. Effective implementation of machine learning algorithms using 3D colour texture feature for traffic sign detection for smart cities[J]. Expert Systems, 2021, 39(5): e12781.
[7] Wan H, Gao L, Su M, et al. A novel neural network model for traffic sign detection and recognition under extreme conditions[J]. Journal of Sensors, 2021, 7: 9984787.
[8] Yu L, Xia X, Zhou K. Traffic sign detection based on visual co-saliency in complex scenes [J]. Applied Intelligence, 2019, 49(2): 764-790.
[9] Coţovanu D, Zet C, Foşalău C, et al. Detection of traffic signs based on support vector machine classification using HOG features[C]∥Proceedings of the 2018 International Conference and Exposition on Electrical And Power Engineering, Iasi, Romania, 2018: 8559784.
[10] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[11] Simonyan K, Zisserman A.Very deep convolutional networks for large-scale image recognition [J/OL].(2015-04-10)[2023-07-30].
[12] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 7780459.
[13] Chollet F. Xception: deep learning with depthwise separable convolutions[C]∥Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 8099678.
[14] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J/OL].(2016-04-30)[2023-07-30].
[15] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]∥Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 8237586.
[16] Liu Z, Lin Y, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]∥Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 10012-10022.
[17] Real E, Liang C, So D R, et al. AutoML-Zero: evolving machine learning algorithms from scratch[C]∥Proceedings of the International Conference on Machine Learning, Vienna, Austria, 2020: 8007-8019.
[18] Liu H, Simonyan K, Yang Y. DARTS: differentiable architecture search[J/OL].(2019-04-23)[2023-07-30].
[19] Gao S H, Cheng M M, Zhao K, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662.
[20] Liu Z, Mao H, Wu C Y, et al. A convnet for the 2020s[C]∥Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9879745.
[21] Pham H, Guan M Y, Zoph B, et al.Efficient neural architecture search via parameter sharing [J/OL].(2018-02-12)[2023-07-30].
[22] Tang Y, Han K, Guo J, et al. GhostNetV2: enhance cheap operation with long-range attention [J/OL].(2022-11-23)[2023-07-30].
[23] Rao Y, Zhao W, Tang Y, et al.HorNet: efficient high-order spatial interactions with recursive gated convolutions [J/OL].(2022-10-11)[2023-07-30].
[24] Chen J, Kao S H, He H, et al. Run, don't walk: chasing higher flops for faster neural networks [J/OL].(2023-05-21)[2023-07-30].
[1] 李健,刘欢,李艳秋,王海瑞,关路,廖昌义. 基于THGS算法优化ResNet-18模型的图像识别[J]. 吉林大学学报(工学版), 2025, 55(5): 1629-1637.
[2] 张汝波,常世淇,张天一. 基于深度学习的图像信息隐藏方法综述[J]. 吉林大学学报(工学版), 2025, 55(5): 1497-1515.
[3] 李振江,万利,周世睿,陶楚青,魏巍. 基于时空Transformer网络的隧道交通运行风险动态辨识方法[J]. 吉林大学学报(工学版), 2025, 55(4): 1336-1345.
[4] 赵孟雪,车翔玖,徐欢,刘全乐. 基于先验知识优化的医学图像候选区域生成方法[J]. 吉林大学学报(工学版), 2025, 55(2): 722-730.
[5] 刘元宁,臧子楠,张浩,刘震. 基于深度学习的核糖核酸二级结构预测方法[J]. 吉林大学学报(工学版), 2025, 55(1): 297-306.
[6] 徐慧智,蒋时森,王秀青,陈爽. 基于深度学习的车载图像车辆目标检测和测距[J]. 吉林大学学报(工学版), 2025, 55(1): 185-197.
[7] 李路,宋均琦,朱明,谭鹤群,周玉凡,孙超奇,周铖钰. 基于RGHS图像增强和改进YOLOv5网络的黄颡鱼目标提取[J]. 吉林大学学报(工学版), 2024, 54(9): 2638-2645.
[8] 张磊,焦晶,李勃昕,周延杰. 融合机器学习和深度学习的大容量半结构化数据抽取算法[J]. 吉林大学学报(工学版), 2024, 54(9): 2631-2637.
[9] 乔百友,武彤,杨璐,蒋有文. 一种基于BiGRU和胶囊网络的文本情感分析方法[J]. 吉林大学学报(工学版), 2024, 54(7): 2026-2037.
[10] 郭昕刚,何颖晨,程超. 抗噪声的分步式图像超分辨率重构算法[J]. 吉林大学学报(工学版), 2024, 54(7): 2063-2071.
[11] 张丽平,刘斌毓,李松,郝忠孝. 基于稀疏多头自注意力的轨迹kNN查询方法[J]. 吉林大学学报(工学版), 2024, 54(6): 1756-1766.
[12] 孙铭会,薛浩,金玉波,曲卫东,秦贵和. 联合时空注意力的视频显著性预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1767-1776.
[13] 陆玉凯,袁帅科,熊树生,朱绍鹏,张宁. 汽车漆面缺陷高精度检测系统[J]. 吉林大学学报(工学版), 2024, 54(5): 1205-1213.
[14] 李雄飞,宋紫萱,朱芮,张小利. 基于多尺度融合的遥感图像变化检测模型[J]. 吉林大学学报(工学版), 2024, 54(2): 516-523.
[15] 杨国俊,齐亚辉,石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨帆,王珂,钱志鸿. 基于信噪比的蓝牙自适应分组选择算法[J]. 吉林大学学报(工学版), 2006, 36(01): 103 -0107 .
[2] 陈绵书, 付平, 李勇, 张慧. 基于范围相似分最小化的图像特征融合[J]. 吉林大学学报(工学版), 2010, 40(增刊): 365 -0368 .
[3] 付朝阳,郭雷,常威威. 网络的高光谱图像融合[J]. 吉林大学学报(工学版), 2011, 41(03): 838 -843 .
[4] 王素,陈南飞,朱玉明,高峰. 一种新的功能梯度材料实体建模方法[J]. 吉林大学学报(工学版), 2006, 36(03): 376 -0381 .
[5] 史文库, 郑瑞清. 主动控制电致伸缩液压悬置隔振特性仿真[J]. 吉林大学学报(工学版), 2005, 35(02): 116 -0121 .
[6] 王丽娟,林年丰,齐翀,黄继国,吕臻 . 曝气微电解-絮凝工艺预处理嘧啶废水[J]. 吉林大学学报(工学版), 2008, 38(06): 1501 -1504 .
[7] 杨志发, 于卓, 管欣, 李世武. 道路景观对行车安全影响的仿真模型[J]. 吉林大学学报(工学版), 2010, 40(增刊): 179 -0182 .
[8] 张嵩, 马林华, 唐红, 田雨, 查翔. 具有完全线性编码复杂度的QC-LDPC码的构造方法及短环优化算法[J]. 吉林大学学报(工学版), 2013, 43(03): 824 -829 .
[9] 陈鹏飞, 田地, 杨光. 基于MVC架构的LIBS软件设计与实现[J]. 吉林大学学报(工学版), 2016, 46(1): 242 -245 .
[10] 秦余钢, 马勇, 张亮, 李腾飞. 基于改进最小二乘算法的船舶操纵性参数辨识[J]. 吉林大学学报(工学版), 2016, 46(3): 897 -903 .