吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1705-1713.doi: 10.13229/j.cnki.jdxbgxb.20230812
Bin WEN1,2(
),Yi-fu DING1,Chao YANG1(
),Yan-jun SHEN1,Hui LI3
摘要:
自动驾驶技术的实现需要对交通标识进行高精度的识别,但由于交通标识的相似度高、尺寸小且易受户外环境影响,实时精准检测变得具有挑战性。针对传统神经网络设计方式效率低下的问题,本文提出了自选择架构算法,可以自动调整网络结构以提高模型的性能和效率。该算法采用两阶段训练实现网络节点最优路径选择,同时对多损失函数权重超参数使用梯度传播进行训练,使用动态损失网络方案替代传统人工调参。实验结果表明,该算法在GTSRB数据集中实现了95.74%的准确率和146.58帧/s的检测速度,且模型参数量仅为0.46 Mb,可部署于移动设备。与传统手动设计静态网络相比,采用自学习架构模块可以降低实验成本,提高精度和性能,在不同环境下更容易实现更好的检测效果,其损失收敛速度也获得明显提升。
中图分类号:
| [1] | Babi D, Babi D, Fioli M, et al.Analysis of market-ready traffic sign recognition systems in cars: a test field study[J].Energies, 2021, 14: 14123697. |
| [2] | 冯润泽, 江昆, 于伟光, 等. 基于两阶段分类算法的中国交通标志牌识别 [J]. 汽车工程, 2022, 44(3): 434-441. |
| Feng Run-ze, Jiang Kun, Yu Wei-guang, et al. Chinese traffic sign recognition based on two-stage classification algorithm[J]. Automotive Engineering, 2022, 44(3): 434-441. | |
| [3] | Wang M, Liu R, Yang J, et al.Traffic sign three-dimensional reconstruction based on point clouds and panoramic images[J].Photogrammetric Record, 2022, 37(177): 87-110. |
| [4] | Shen L, You L, Peng B, et al.Group multi-scale attention pyramid network for traffic sign detection[J].Neuro Computing, 2021, 452(6): 1-14. |
| [5] | Liu Y, Peng J, Xue J H, et al. TSingNet: scale-aware and context-rich feature learning for traffic sign detection and recognition in the wild[J].Neurocomputing, 2021, 447(4): 10-22. |
| [6] | Vashisht M, Kumar B. Effective implementation of machine learning algorithms using 3D colour texture feature for traffic sign detection for smart cities[J]. Expert Systems, 2021, 39(5): e12781. |
| [7] | Wan H, Gao L, Su M, et al. A novel neural network model for traffic sign detection and recognition under extreme conditions[J]. Journal of Sensors, 2021, 7: 9984787. |
| [8] | Yu L, Xia X, Zhou K. Traffic sign detection based on visual co-saliency in complex scenes [J]. Applied Intelligence, 2019, 49(2): 764-790. |
| [9] | Coţovanu D, Zet C, Foşalău C, et al. Detection of traffic signs based on support vector machine classification using HOG features[C]∥Proceedings of the 2018 International Conference and Exposition on Electrical And Power Engineering, Iasi, Romania, 2018: 8559784. |
| [10] | Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
| [11] | Simonyan K, Zisserman A.Very deep convolutional networks for large-scale image recognition [J/OL].(2015-04-10)[2023-07-30]. |
| [12] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 7780459. |
| [13] | Chollet F. Xception: deep learning with depthwise separable convolutions[C]∥Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 8099678. |
| [14] | Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J/OL].(2016-04-30)[2023-07-30]. |
| [15] | Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]∥Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 8237586. |
| [16] | Liu Z, Lin Y, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]∥Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 10012-10022. |
| [17] | Real E, Liang C, So D R, et al. AutoML-Zero: evolving machine learning algorithms from scratch[C]∥Proceedings of the International Conference on Machine Learning, Vienna, Austria, 2020: 8007-8019. |
| [18] | Liu H, Simonyan K, Yang Y. DARTS: differentiable architecture search[J/OL].(2019-04-23)[2023-07-30]. |
| [19] | Gao S H, Cheng M M, Zhao K, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. |
| [20] | Liu Z, Mao H, Wu C Y, et al. A convnet for the 2020s[C]∥Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9879745. |
| [21] | Pham H, Guan M Y, Zoph B, et al.Efficient neural architecture search via parameter sharing [J/OL].(2018-02-12)[2023-07-30]. |
| [22] | Tang Y, Han K, Guo J, et al. GhostNetV2: enhance cheap operation with long-range attention [J/OL].(2022-11-23)[2023-07-30]. |
| [23] | Rao Y, Zhao W, Tang Y, et al.HorNet: efficient high-order spatial interactions with recursive gated convolutions [J/OL].(2022-10-11)[2023-07-30]. |
| [24] | Chen J, Kao S H, He H, et al. Run, don't walk: chasing higher flops for faster neural networks [J/OL].(2023-05-21)[2023-07-30]. |
| [1] | 李健,刘欢,李艳秋,王海瑞,关路,廖昌义. 基于THGS算法优化ResNet-18模型的图像识别[J]. 吉林大学学报(工学版), 2025, 55(5): 1629-1637. |
| [2] | 张汝波,常世淇,张天一. 基于深度学习的图像信息隐藏方法综述[J]. 吉林大学学报(工学版), 2025, 55(5): 1497-1515. |
| [3] | 李振江,万利,周世睿,陶楚青,魏巍. 基于时空Transformer网络的隧道交通运行风险动态辨识方法[J]. 吉林大学学报(工学版), 2025, 55(4): 1336-1345. |
| [4] | 赵孟雪,车翔玖,徐欢,刘全乐. 基于先验知识优化的医学图像候选区域生成方法[J]. 吉林大学学报(工学版), 2025, 55(2): 722-730. |
| [5] | 刘元宁,臧子楠,张浩,刘震. 基于深度学习的核糖核酸二级结构预测方法[J]. 吉林大学学报(工学版), 2025, 55(1): 297-306. |
| [6] | 徐慧智,蒋时森,王秀青,陈爽. 基于深度学习的车载图像车辆目标检测和测距[J]. 吉林大学学报(工学版), 2025, 55(1): 185-197. |
| [7] | 李路,宋均琦,朱明,谭鹤群,周玉凡,孙超奇,周铖钰. 基于RGHS图像增强和改进YOLOv5网络的黄颡鱼目标提取[J]. 吉林大学学报(工学版), 2024, 54(9): 2638-2645. |
| [8] | 张磊,焦晶,李勃昕,周延杰. 融合机器学习和深度学习的大容量半结构化数据抽取算法[J]. 吉林大学学报(工学版), 2024, 54(9): 2631-2637. |
| [9] | 乔百友,武彤,杨璐,蒋有文. 一种基于BiGRU和胶囊网络的文本情感分析方法[J]. 吉林大学学报(工学版), 2024, 54(7): 2026-2037. |
| [10] | 郭昕刚,何颖晨,程超. 抗噪声的分步式图像超分辨率重构算法[J]. 吉林大学学报(工学版), 2024, 54(7): 2063-2071. |
| [11] | 张丽平,刘斌毓,李松,郝忠孝. 基于稀疏多头自注意力的轨迹kNN查询方法[J]. 吉林大学学报(工学版), 2024, 54(6): 1756-1766. |
| [12] | 孙铭会,薛浩,金玉波,曲卫东,秦贵和. 联合时空注意力的视频显著性预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1767-1776. |
| [13] | 陆玉凯,袁帅科,熊树生,朱绍鹏,张宁. 汽车漆面缺陷高精度检测系统[J]. 吉林大学学报(工学版), 2024, 54(5): 1205-1213. |
| [14] | 李雄飞,宋紫萱,朱芮,张小利. 基于多尺度融合的遥感图像变化检测模型[J]. 吉林大学学报(工学版), 2024, 54(2): 516-523. |
| [15] | 杨国俊,齐亚辉,石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332. |
|