吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (2): 313-332.doi: 10.13229/j.cnki.jdxbgxb.20221475

• 综述 •    

基于数字图像技术的桥梁裂缝检测综述

杨国俊1,2(),齐亚辉1,石秀名1   

  1. 1.兰州理工大学 土木工程学院,兰州 730050
    2.招商局重庆交通科研设计院有限公司 桥梁工程结构动力学国家重点实验室,重庆 400067
  • 收稿日期:2022-11-18 出版日期:2024-02-01 发布日期:2024-03-29
  • 作者简介:杨国俊(1988-),男,副教授,博士.研究方向:隧道式锚碇的力学特性.E-mail:yanggj403@163.com
  • 基金资助:
    甘肃省科技计划项目(22JR5RA250);国家自然科学基金项目(51808274);中国博士后科学基金项目(2019M653897XB)

Review of bridge crack detection based on digital image technology

Guo-jun YANG1,2(),Ya-hui QI1,Xiu-ming SHI1   

  1. 1.School of Civil Engineering,Lanzhou University of Technology,Lanzhou 730050,China
    2.State Key Laboratory of Bridge Engineering Structural Dynamic,China Merchants Chongqing Communications Technology Research&Design Institute Co. ,Ltd. ,Chongqing 400074,China
  • Received:2022-11-18 Online:2024-02-01 Published:2024-03-29

摘要:

传统的桥梁裂缝检测主要基于人眼识别,检测效率、精度低,而且人眼识别存在受光照影响大、桥塔、高墩等高空位置无法检测及主观性强的问题。近年来,国内外诸多学者为了解决上述问题,研发了许多基于数字图像技术的桥梁裂缝检测设备,像搭载高清相机的桥梁检测车、无人机、爬墩机器人等。同时,拥有高效、高精度的裂缝检测算法更是裂缝检测的基础,如何权衡检测速度与精度一直也是众多学者研究的热点问题之一。本文就近年来国内外基于数字图像技术的桥梁裂缝检测设备、相机的搭载平台与标定方法、预处理算法、传统检测算法、深度学习算法、裂缝特征计算、图像拼接算法以及裂缝的三维输出与监测等方面展开综合评述。此外,对研究过程中存在的不足进行了总结,并从桥梁裂缝检测方法、裂缝三维表达、裂缝的监测跟踪管理和桥梁刚度损失评价及预警等方面进行了展望。

关键词: 桥梁工程, 裂缝识别, 图像处理, 卷积神经网络, 深度学习, 智能检测

Abstract:

As one of the important contents of bridge health detection, crack detection reflects the stress and damage state of bridge structure. The traditional bridge crack detection is mainly based on human eye recognition, of which efficiency and accuracy are both low. Moreover, the human eye recognition has the following problems such as effected greatly by illumination, incapability to detect in some high-altitude positions like bridge towers and high piers and strong subjectivity. In recent years, many scholars at home and abroad have developed many bridges crack detection equipment based on digital image technology to solve the above problems, such as bridge detection vehicles equipped with high-definition cameras, drones, and climbing robots. Meanwhile, the efficient and high-precision crack detection algorithm is the basis of crack detection. How to balance the detection speed and accuracy has always been one of the hot issues studied by many scholars. In this paper, the bridge crack detection equipment based on digital image technology, the platform and calibration method of camera, preprocessing algorithm, traditional detection algorithm, deep learning algorithm, crack feature calculation, image stitching algorithm and three-dimensional output and monitoring of cracks are reviewed. In addition, summaries to deficiencies in the study and prospects the bridge crack detection method, crack three-dimensional expression, crack monitoring and management, bridge stiffness loss evaluation and early warning for the future development trend.

Key words: bridge engineering, crack identification, image processing, convolutional neural network, deep learning, intelligent detection

中图分类号: 

  • U446.3

图1

机器人桥梁检测系统"

图2

桥墩攀爬机器人对桥墩进行裂缝检测"

图3

带有轮式电极传感器的攀爬机器人"

图4

采用无人机对桥墩裂缝进行检测"

图5

搭载相机组的桥梁检测车"

图6

双目水下机器人"

图7

相机成像模型示意图"

表1

传统相机标定方法"

标定方法优点缺点常用方法
传统相机 标定法可使用于任意的相机模型、精度高需要标定板、结果受标定板精度影响Tsai两步法、张氏标定法
主动视觉相机标定法算法简单、鲁棒性高成本高、 设备昂贵主动系统控制相机做特定运动
相机自标 定法灵活性强、可在线标定精度低、 鲁棒性差分层逐步标定、基于Kruppa方程

表2

常见的桥梁裂缝检测去噪算法对比"

名称描述优点缺点
均值滤波26线性滤波器,用邻域像素的均值代替中心像素值方法简单,计算速度快,在去除高斯噪声上表现较好去噪过程中,会造成图像一定程度的细节损坏,使图像变得模糊
中值滤波27-32非线性滤波器,用邻域像素的中值代替中心像素值,减少图像模糊程度,在此基础上进一步衍生出了自适应中值滤波器等在去除椒盐噪声、脉冲噪声的同时又能保留图像细节对结构复杂的图像在去除噪声的过程中,会损失图像的细节,破坏图像的几何结构
高斯滤波线性滤波器,对邻域像素进行加权平均,在平滑噪声的同时保持图像原本的灰度分布结构特征,在此基础上进一步发展出双边滤波器对于服从正态分布的噪声有很好的抑制效果,可以很好地降低图片噪声,保留更多的图像细节去噪的同时也会使得图像变得模糊,对椒盐噪声作用较小
形态学滤波从传统的形态学开闭运算的角度出发,设计的一种基于形态学原理的滤波方法,如开闭运算、顶帽变换等可以消除一些小的像素点,且在不改变物体形状的前提下对图像进行平滑操作对于较大的噪点无法去除
双边滤波33通过考虑距离因素和像素值差异的影响,使其在去噪的同时,能够很好地保留图像的特征信息对于噪声不集中、细节较多的图像,能够很好地保护细节信息去噪的同时,会移除图像纹理,并且会保留图像中的阴影
小波变换对图像进行多次小波变换,然后将低频信息滤除并对高频信息进行平滑滤除噪声,最后通过逆变换重构原始图像以实现对图像的滤波处理能够保留图像的频率信息,同时也保留了图像的空间信息方向性较弱,只能捕捉有限的方向信息,不包含高阶的各向异性因素
连通域去噪通过设置阈值大小,剔除小于阈值的连通域可以去除较大的噪点阈值需要按人为经验设置,且不能去除面积跟裂缝相近的噪点
基于特征去噪裂缝一般具有明显的线形特征,可将长度小于阈值或者长宽比不满足裂缝特征的去除可以去除非线形噪点,适用于裂缝去噪不能去除线形特征较强噪点

图8

直方图均衡化效果"

图9

分段灰度拉伸图"

图10

改进的FAST算法"

图11

裂缝拼接示意图"

图12

卷积神经网络检测裂缝"

图13

U-Net结构"

表3

公开的桥梁裂缝数据集"

数据集名称描述应用领域
Aft_Original_Crack_DataSet_Second782 068张1 024×1 024像素的桥梁裂缝图像全部包含裂缝语义分割及目标检测
Concrete Crack Images for Classification7940 000张227×227像素的混凝土表面裂缝图像, 部分无裂缝语义分割及图像分类
SDNET20188056 092张256×256像素的桥梁裂缝、缺损、孔洞图像, 部分无裂缝语义分割、目标检测及图像分类
Crack dataset816 069张224×224像素的桥梁裂缝图像,全部包含裂缝语义分割及图像分类
Deep Crack828 592张256×256像素的混凝土表面裂缝图像语义分割

表4

常见边缘检测算子比较"

算子优缺点比较
Roberts对陡峭的低噪声的图像处理效果较好,当图像边缘接近正负45°时,处理效果最佳,但使用Roberts算子提取的边缘线的比较粗,因此边缘定位不是很准确
Sobel一阶导数算子,抗噪性能比较好,所以适用于噪声较多的图像,且该算子对边缘定位比较准确8788
Prewitt对灰度渐变和噪声较多的图像处理效果较好
Log二阶导数算子,结合了高斯和拉普拉斯算法,边缘检测受噪声影响较大,其适用于背景与裂缝明暗程度差距大且待测面上噪声较小的情况,该算法容易在灰度变化较小的区域检测出伪边缘
Canny此方法不容易受噪声的干扰,能够检测到真正的弱边缘,该方法的优点在于使用双阈值分别检测强边缘和弱边缘,并且仅当弱边缘与强边缘相连时,才将弱边缘包含在输出图像中89

图14

5种边缘检测算法对比"

图15

利用中心线计算裂缝长度"

图16

8链码示意图"

图17

基于内切圆的裂缝宽度法"

图18

基于边缘梯度的裂缝宽度法"

图19

三维裂缝云图"

图20

可视化点云模型"

图21

桥梁健康管理系统"

图22

新旧裂缝"

1 Spencer B F, Hoskere V, Narazaki Y. Advances in computer vision-based civil infrastructure inspection and monitoring[J]. Engineering, 2019, 5(2): 199-222.
2 钟新谷, 彭雄, 沈明燕. 基于无人飞机成像的桥梁裂缝宽度识别可行性研究[J]. 土木工程学报, 2019, 52(4): 52-61.
Zhong Xin-gu, Peng Xiong, Shen Ming-yan. Study on the feasibility of identifying concrete crack width with images acquired by unmanned aerial vehicles[J]. China Civil Engineering Journal, 2019, 52(4): 52-61.
3 Sanchez-Cuevas P J, Ramon-Soria P, Arrue B, et al. Robotic system for inspection by contact of bridge beams using UAVs[J]. Sensors, 2019, 19(2): 305.
4 Jang K, An Y K, Kim B, et al. Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(1): 14-29.
5 Leibbrandt A, Caprari G, Angst U, et al. Climbing robot for corrosion monitoring of reinforced concrete structures[C]∥2nd International Conference on Applied Robotics for the Power Industry, Zurich, Switzerland, 2012: 10-15.
6 秦海伟. 基于图像处理的桥梁裂缝识别及测量[D]. 上海: 上海交通大学船舶海洋与建筑工程学院, 2020.
Qin Hai-wei. Identification and measurement of bridge cracks based on image processing[D]. Shanghai: School of Naval Architecture, Ocean and Civil Engineering of Shanghai Jiao Tong University, 2020.
7 Liu Y F, Nie X, Fan J S, et al. Image-based crack assessment of bridge piers using unmanned aerial vehicles and three dimensional scene reconstruction[J]. Computer Aided Civil and Infrastructure Engineering, 2020, 35(5): 511-529.
8 Xie R, Yao J, Liu K, et al. Automatic multi-image stitching for concrete bridge inspection by combining point and line features[J]. Automation in Construction, 2018, 90: 265-280.
9 谢文高, 张怡孝, 刘爱荣, 等. 基于水下机器人与数字图像技术的混凝土结构表面裂缝检测方法[J]. 工程力学, 2022, 39(): 64-70.
Xie Wen-gao, Zhang Yi-xiao, Liu Ai-rong, et al. Method for concrete surface cracking detection based on rov and digital image technology[J]. Engineering Mechanics, 2022, 39(Sup.1): 64-70.
10 Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
11 Hartley R I. Self-calibration of stationary cameras[J]. International Journal of Computer Vision, 1997, 22(1): 5-23.
12 杨长江, 汪威, 胡占义. 一种基于主动视觉的摄像机内参数自定标方法[J]. 计算机学报, 1998(5): 428-435.
Yang Chang-jiang, Wang wei, Hu Zhan-yi. A self-calibration method for camera internal parameters based on active vision[J]. Chinese Journal of Computers, 1998, 21(5): 428-435.
13 Hartley R I. Projective reconstruction and invariants from multiple images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(10):1036-1041.
14 杨亚男. 基于图像序列的摄像机自标定方法研究[D]. 绵阳: 西南科技大学计算机科学与技术学院, 2020.
Yang Ya-nan. Research on camera self-calibration method based on image sequence[D]. Mianyang: School of Computer Science and Technology, Southwest University of Science and Technology, 2020.
15 Hartley R I, Hayman E, de Agapito L, et al. Camera calibration and the search for infinity[C]∥Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999: 510-517.
16 Wen J, Schweitzer G. Hybrid calibration of CCD cameras using artificial neural nets[C]∥1991 IEEE International Joint Conference on Neural Networks, Singapore, 1991: 337-342.
17 Jin L G, Rui L G. Camera calibration for monocular vision system based on Harris corner extraction and neural network[C]∥International Conference on Consumer Electronics, Communications and Networks, Xianning, China, 2011: 1-4.
18 Ding X Z. Research on kinect calibration and depth error compensation based on BP neural network[C]∥International Conference on Computer Vision, Image and Deep Learning, Chongqing, China, 2020: 596-600.
19 胡志新, 王涛. 改进遗传算法优化BP神经网络的双目相机标定[J]. 电光与控制, 2022, 29(1): 75-79.
Hu Zhi-xin, Wang Tao. Improved genetic algorithm to optimize binocular camera calibration of BP neural network[J]. Electronics Optics & Control, 2022, 29(1): 75-79.
20 丁威, 俞珂, 舒江鹏. 基于深度学习和无人机的混凝土结构裂缝检测方法[J]. 土木工程学报, 2021, 54(): 1-12.
Ding Wei, Yu Ke, Shu Jang-peng. Method for detecting cracks in concrete structures based on deep learning and UAV[J]. China Civil Engineering Journal, 2021, 54(Sup.1): 1-12.
21 丁威. 基于图像的桥梁裂缝检测理论与实践[D]. 广州: 华南理工大学土木与交通学院, 2020.
Ding Wei. Theory and practice of bridge crack detection based on image[D]. Guangzhou: School of Civil Engineering and Transportation, South China University of Technology, 2020.
22 李若星. 基于机器视觉的混凝土裂缝检测方法研究[D]. 重庆: 重庆大学建设管理与房地产学院, 2018.
Li Ruo-xing. A machine vision based method for concrete crack detection[D]. Chongqing: School of Management Science and Real Estate, Chongqing University, 2018.
23 王密, 潘俊. 一种数字航空影像的匀光方法[J]. 中国图象图形学报, 2004(6): 104-108.
Wang Mi, Pan Jun. A method of removing the uneven illumination for digital aerial image[J]. Journal of Image and Graphics, 2004(6): 104-108.
24 姚芳, 万幼川, 胡晗. 基于Mask原理的改进匀光算法研究[J]. 遥感信息, 2013, 28(3): 8-13.
Yao Fang, Wan You-chuan, Hu Han. Research on the improved image dodging algorithm based on mask technique[J]. Remote Sensing Information, 2013, 28(3): 8-13.
25 马丽莎. 基于数字图像处理的路面裂缝识别方法研究[D]. 南京: 东南大学交通学院, 2018.
Ma Li-sha. Research on pavement crack recognition method based on digital image processing [D]. Nanjing: School of Transportation, Southeast University, 2018.
26 李晋惠. 公路路面裂缝类病害图像处理算法研究[J]. 计算机工程与应用, 2003, 39(35): 212-213.
Li Jin-hui. Image processing algorithm for detecting the pavement crack diseases[J]. Computer Engineering and Applications, 2003, 39(35): 212-213, .
27 李辉, 蒋秀明, 高殿斌, 等. Matlab语言在数字图像中值滤波中的应用研究[J]. 天津工业大学学报, 2003, 22(1): 87-88.
Li Hui, Jiang Xiu-ming, Gao Dian-bin, et al. Application and study of Matlab in image median filtering[J]. Journal of Tianjin Polytechnic University, 2003, 22(1): 87-88.
28 王松林. 一种改进的自适应加权中值去噪算法的研究[D]. 武汉: 武汉科技大学信息科技与工程学院, 2016.
Wang Song-lin. Research on the improved adaptive weighted median denoising algorithm[D]. Wuhan: School of Information Technology and Engineering, Wuhan University of Science and Technology, 2016.
29 屈正庚, 牛少清. 一种改进的自适应加权中值滤波算法研究[J]. 计算机技术与发展, 2018, 28(12): 86-90.
Qu Zheng-geng, Niu Shao-qing. Research on an improved adaptive weighted median filtering algorithm[J]. Computer Technology and Development, 2018, 28(12): 86-90.
30 张振海, 贾争满, 季坤. 基于改进的Otsu法的地铁隧道裂缝识别方法研究[J]. 重庆交通大学学报: 自然科学版, 2022, 41(1): 84-90.
Zhang Zheng-hai, Jia Zheng-man, Ji Kun. Crack identification method of subway tunnel based on improved Otsu method[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(1): 84-90.
31 张雪峰, 闫慧. 基于中值滤波和分数阶滤波的图像去噪与增强算法[J]. 东北大学学报: 自然科学版, 2020, 41(4): 482-487.
Zhang Xue-feng, Yan Hui. Image denoising and enhancement algorithm based on median filtering and fractional order filtering[J]. Journal of Northeastern University (Natural Science), 2020, 41(4): 482-487.
32 Huang T, Yang G, Tang G. A fast two-dimensional median filtering algorithm[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, 27(1): 13-18.
33 余博, 郭雷, 钱晓亮, 等. 一种新的自适应双边滤波算法[J]. 应用科学学报, 2012, 30(5): 517-523.
Yu Bo, Guo Lei, Qian Xiao-liang, et al. A new adaptive bilateral filtering[J]. Journal of Applied Sciences, 2012, 30(5): 517-523.
34 Lowe D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
35 Brown M, Lowe D G. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74(1): 59-73.
36 瞿中, 林嗣鹏, 鞠芳蓉. 一种改进的降低扭曲误差的快速图像拼接算法[J]. 计算机科学, 2016, 43(5): 279-282.
Qu Zhong, Lin Si-peng, Ju Fang-rong. Improved algorithm of fast image stitching by reducing panoramic distortion[J]. Computer Science, 2016, 43(5): 279-282.
37 Bay H, Ess A, Tuytelaars T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
38 Juan L, Gwun O. A comparison of sift, pca-sift and SURF[J]. International Journal of Image Processing (IJIP), 2009, 3(4): 143-152.
39 金萍萍. 图像拼接和裂缝提取方法研究及在多足机器人桥梁检测中的应用[D]. 广州: 华南理工大学自动化科学与工程学院, 2015.
Jin Ping-ping. Research on image mosaic and crack extraction method[D]. Guangzhou: School of Automation Science and Engineering, South China University of Technology, 2015.
40 Efros A A, Freeman W T. Image quilting for texture synthesis and transfer[C]∥Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, New York, America, 2001: 341-346.
41 Avidan S, Shamir A. Seam carving for content-aware image resizing[J]. ACM Transactions on Graphics, 2007, 28(3): 10-15.
42 Wang R, Bu F, Jin H, et al. A feature-level image fusion algorithm based on neural networks[C]∥1st International Conference on Bioinformatics and Biomedical Engineering, Wuhan, China, 2007: 821-824.
43 Nishii R. A Markov random field-based approach to decision-level fusion for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2316-2319.
44 Huan R, Pan Y. Decision fusion strategies for SAR image target recognition[J]. IET Radar, Sonar & Navigation, 2011, 5(7): 747-755.
45 Bellman R, Kalaba R E. Dynamic Programming and Modern Control Theory[M]. New York: Academic Press, 1965.
46 Burt P J, Adelson E H. Readings in Computer Vision: Issues, Problems, Principles, and Paradigms[M]. Los Altos: Morgan Kaufmann, 1987.
47 Zhang Z, Blum R S. A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application[J]. Proceedings of the IEEE, 1999, 87(8): 1315-1326.
48 李景玉, 张荣芬, 刘宇红. 基于小波变换的多尺度图像融合增强算法[J]. 光学技术, 2021, 47(2): 217-222.
Li Jing-yu, Zhang Rong-fen, Liu Yu-hong. Multiscale image fusion and enhancement algorithm based on wavelet transform[J]. Optical Technique, 2021, 47(2): 217-222.
49 Tian F, Shi P. Image mosaic using ORB descriptor and improved blending algorithm[C]∥7th International Congress on Image and Signal Processing, Dalian, China, 2014: 693-698.
50 Jia Y H. Fusion of lands at TM and SAR images based on principal component analysis[J]. Remote Sensing Technology and Application, 2012, 13(1): 46-49.
51 肖化超, 周诠, 郑小松. 基于IHS变换和Curvelet变换的卫星遥感图像融合方法[J]. 华南理工大学学报: 自然科学版, 2016, 44(1): 58-64.
Xiao Hua-chao, Zhou Quan, Zheng Xiao-song. Satellite remote sensing image fusion method based on IHS transform and Curvelet transform[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(1): 58-64.
52 张慧芳, 张鹏林, 晁剑. 使用多尺度模糊融合的高分影像变化检测[J]. 武汉大学学报: 信息科学版, 2022, 47(2): 296-303.
Zhang Hui-fang, Zhang Peng-lin, Chao Jian. High-resolution image change detection using multi-scale blur fusion[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 296-303.
53 Li S, Kwok J T, Wang Y. Multifocus image fusion using artificial neural networks[J]. Pattern Recognition Letters, 2002, 23(8): 985-997.
54 林嗣鹏. 序列图像快速拼接和畸变消除算法研究[D]. 重庆: 重庆邮电大学计算机科学与技术学院, 2016.
Lin Si-peng. Fast panorama stitching and reducing the distortion errors in image sequence[D]. Chongqing: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, 2016.
55 瞿中, 乔高元, 林嗣鹏. 一种消除图像拼接缝和鬼影的快速拼接算法[J]. 计算机科学, 2015, 42(3): 280-283.
Qu Zhong, Qiao Gao-yuan, Lin Si-peng. Fast image stitching algorithm eliminates seam line and ghosting[J]. Computer Science, 2015, 42(3): 280-283.
56 于利存, 贺拴海, 蒋树庆, 等. 混凝土桥梁裂缝图像自动匹配、拼接与融合方法[J]. 长安大学学报: 自然科学版, 2022, 42(6): 33-41.
Yu Li-cun, He Shuan-hai, Jiang Shu-qin, et al. Automatic matching, stitching and fusion method of concreate bridge crack images[J]. Journal of Chang'an University (Natural Science Edition), 2022, 42(6): 33-41.
57 吴俊杰. 基于无人机的桥梁图像拼接及缺陷检测算法研究[D]. 上海: 上海交通大学机械与动力工程学院, 2017.
Wu Jun-jie. Picture stitching and defect detection for UAV based bridge inspection[D]. Shanghai: College of Mechanical Engineering, Shanghai Jiao Tong University, 2017.
58 王睿, 漆泰岳. 基于机器视觉检测的裂缝特征研究[J]. 土木工程学报, 2016, 49(7): 123-128.
Wang Rui, Qi Tai-yue. Study on crack characteristics based on machine vision detection[J]. China Civil Engineering Journal, 2016, 49(7): 123-128.
59 Shi Y, Cui L, Qi Z, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445.
60 廖延娜, 李婉. 基于卷积神经网络的桥梁裂缝检测方法[J]. 计算机工程与设计, 2021, 42(8): 2366-2372.
Liao Yan-na, Li Wan. Bridge crack detection method based on convolution neural network[J]. Computer Engineering and Design, 2021, 42(8): 2366-2372.
61 Sheng P, Chen L, Tian J. Learning-based road crack detection using gradient boost decision tree[C]∥13th IEEE Conference on Industrial Electronics and Applications, Wuhan, China, 2018: 1228-1232.
62 韩晓健, 赵志成. 基于计算机视觉技术的结构表面裂缝检测方法研究[J]. 建筑结构学报, 2018, 39(): 418-427.
Han Xiao-jian, Zhao Zhi-cheng. Structural surface crack detection method based on computer vision technology[J]. Journal of Building Structures, 2018, 39(Sup.1): 418-427.
63 孟诗乔, 张啸天, 乔甦阳, 等. 基于深度学习的网格优化裂缝检测模型研究[J]. 建筑结构学报, 2020, 41(): 404-410.
Meng Shi-qiao, Zhang Xiao-tian, Qiao Su-yang, et al. Research on grid optimized crack detection model based on deep learning[J]. Journal of Building Structures, 2020, 41(Sup.2): 404-410.
64 杨杰文, 章光, 陈西江, 等. 基于深度学习的较复杂背景下桥梁裂缝检测[J]. 铁道科学与工程学报, 2020, 17(11): 2722-2728.
Yang Jie-wen, Zhang Guang, Chen Xi-jiang, et al. Research on bridge crack detection based on deep learning under complex background[J]. Journal of Railway Science and Engineering, 2020, 17(11): 2722-2728.
65 朱苏雅, 杜建超, 李云松, 等. 采用U-Net卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报, 2019, 46(4): 35-42.
Zhu Su-ya, Du Jian-chao, Li Yun-song, et al. Method for bridge crack detection based on the U-Net convolutional networks[J]. Journal of Xidian University, 2019, 46(4): 35-42.
66 余加勇, 李锋, 薛现凯, 等. 基于无人机及Mask R-CNN的桥梁结构裂缝智能识别[J]. 中国公路学报, 2021, 34(12): 80-90.
Yu Jia-yong, Li Feng, Xue Xian-kai, et al. Intelligent identification of bridge structural cracks based on unmanned aerial vehicle and Mask R-CNN[J]. China Journal of Highway and Transport, 2021, 34(12): 80-90.
67 余加勇, 刘宝麟, 尹东, 等. 基于YOLOv5和U-Net3+的桥梁裂缝智能识别与测量[J]. 湖南大学学报: 自然科学版, 2023, 50(5): 65-73.
Yu Jia-yong, Liu Bao-lin, Yin Dong, et al. Intelligent identification and measurement of bridge cracks based on YOLOv5 and U-Net3+[J]. Journal of Hunan University (Natural Sciences), 2023, 50(5): 65-73.
68 谭国金, 欧吉, 艾永明, 等. 基于改进DeepLabv3+模型的桥梁裂缝图像分割方法[J/OL]. [2022-10-09]. DOI: 10.13229/j.cnki.jdxbgxb20220205
doi: 10.13229/j.cnki.jdxbgxb20220205
Tan Guo-jin, Ji Ou, Ai Yong-ming, et al. Bridge crack image segmentation method based on improved Deep Labv3+ model[J/OL]. [2022-10-09]. DOI: 10.13229/j.cnki.jdxbgxb20220205
doi: 10.13229/j.cnki.jdxbgxb20220205
69 张振海, 季坤, 党建武, 等. 基于BCEM模型的桥梁裂缝病害识别方法[J]. 吉林大学学报: 工学版, 2023, 53(5): 1418-1426.
Zhang Zhen-hai, Ji Kun, Dang Jian-wu, et al. Research on a crack identification method for bridge based on BCEM model[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1418-1426.
70 Jiang P, Ergu D, Liu F, et al. A review of yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073.
71 Liu W, Anguelov D, Erhan D, et al. SSD: Single Shot Multibox Detector[M]. Cham: Springer International Publishing, 2016.
72 Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
73 Dung C V. Autonomous concrete crack detection using deep fully convolutional neural network[J]. Automation in Construction, 2019, 99: 52-58.
74 刘凡, 王君锋, 陈峙宇, 等. 基于并行注意力UNet的裂缝检测方法[J]. 计算机研究与发展, 2021, 58(8): 1718-1726.
Liu Fan, Wang Jun-feng, Chen Zhi-yu, et al. Parallel attention based UNet for crack detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1718-1726.
75 李良福, 孙瑞赟. 复杂背景下基于图像处理的桥梁裂缝检测算法[J]. 激光与光电子学进展, 2019, 56(6): 112-122.
Li Liang-fu, Sun Rui-yun. Bridge crack detection algorithm based on image processing under complex background[J]. Laser & Optoelectronics Progress, 2019, 56(6): 112-122.
76 王桂平, 陈旺桥, 杨建喜, 等. 基于迁移学习的桥梁表观病害检测技术研究[J]. 铁道科学与工程学报, 2022, 19(6): 1638-1646.
Wang Gui-ping, Chen Wang-qiao, Yang Jian-xi, et al. A bridge surface distress detection technology based on transfer learning[J]. Journal of Railway Science and Engineering, 2022, 19(6): 1638-1646.
77 Hsieh Y A, Tsai Y J. Machine learning for crack detection: review and model performance comparison [J]. Journal of Computing in Civil Engineering, 2020, 34(5): 04020038.
78 Li L F, Ma W, Li L, et al. Research on bridge crack detection algorithm based on deep learning[J]. Acta Automatica Sinica, 2019, 45(9): 1727-1742.
79 Zhang L, Yang F, Zhang Y D, et al. Road crack detection using deep convolutional neural network[C]∥IEEE International Conference on Image Processing, New York, America, 2016: 3708-3712.
80 Dorafshan S, Thomas R J, Maguire M. SDNET2018: an annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks[J]. Data in Brief, 2018, 21: 1664-1668.
81 Xu H, Su X, Wang Y, et al. Automatic bridge crack detection using a convolutional neural network[J]. Applied Sciences, 2019, 9(14): 2867.
82 Liu Y, Yao J, Lu X, et al. Deep crack: a deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338: 139-153.
83 Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
84 初秀民, 严新平, 陈先桥. 路面破损图像二值化方法研究[J]. 计算机工程与应用, 2008, 44(28): 161-165.
Chu Xiu-min, Yan Xin-ping, Chen Xian-qiao. Study of pavement surface distr ess image binarization[J]. Computer Engineering and Applications, 2008, 44(28): 161-165.
85 Kirschke K, Velinsky S. Histogram-based approach for automated pavement-crack sensing[J]. Journal of Transportation Engineering, 1992, 118(5): 700-710.
86 Devi M P A, Latha T, Sulochana C H. Iterative thresholding based image segmentation using 2D improved Otsu algorithm[C]∥Communication Technologies, Thuckalay, India, 2015: 145-149.
87 伯绍波, 闫茂德, 孙国军, 等. 沥青路面裂缝检测图像处理算法研究[J]. 微计算机信息, 2007, 23(15): 280-282.
Bo Shao-bo, Yan Mao-de, Sun Guo-jun, et al. Research on crack detection image processing algorithm for asphalt pavement surface[J]. Control & Management, 2007, 23(15): 280-282.
88 宋平丽. 基于视频图像的桥梁裂缝检测[D]. 武汉: 武汉理工大学计算机科学与技术学院, 2010.
Song Ping-li. Crack detection of bridge on video image[D]. Wuhan: College of Computer Science and Technology, Wuhan University of Technology, 2010.
89 徐欢, 李振璧, 姜媛媛, 等. 基于Open CV和改进 Canny算子的路面裂缝检测[J]. 计算机工程与设计, 2014, 35(12): 4254-4258.
Xu Huan, Li Zhen-bi, Jiang Yuan-yuan, et al. Pavement crack detection based on Open CV and improved Canny operator[J]. Computer Engineering and Design, 2014, 35(12): 4254-4258.
90 Yamaguchi T, Hashimoto S. Automated crack detection for concrete surface image using percolation model and edge information[C]∥IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 2006: 3355-3360.
91 Yamaguchi T, Hashimoto S. Image processing based on percolation model[J]. IEICE Transactions on Information and Systems, 2006, 89(7): 2044-2052.
92 Yamaguchi T, Hashimoto S. Fast crack detection method for large-size concrete surface images using percolation-based image processing[J]. Machine Vision and Applications 2010, 21(5): 797-809.
93 Qu Z, Lin L D, Guo Y, et al. An improved algorithm for image crack detection based on percolation model[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2015, 10(2): 214-221.
94 Peleg S, Rosenfeld A. A min-max medial axis transformation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981(2): 208-210.
95 王龙云. 路面裂缝检测算法研究[D]. 南京: 南京邮电大学通信与信息工程学院, 2012.
Wang Yun-long. Research on pavement crack detection algorithm[D]. Nanjing: College of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, 2012.
96 Zhang T Y, Suen C Y. A fast parallel algorithm for thinning digital patterns[J]. Communications of the ACM, 1984, 27(3): 236-239.
97 周颖, 刘彤. 基于计算机视觉的混凝土裂缝识别[J]. 同济大学学报: 自然科学版, 2019, 47(9): 1277-1285.
Zhou Ying, Liu Tong. Computer vision-based crack detection and measurement on concrete structure[J]. Journal of Tongji University(Natural Science), 2019, 47(9): 1277-1285.
98 唐钱龙, 谭园, 彭立敏, 等. 基于数字图像技术的隧道衬砌裂缝识别方法研究[J]. 铁道科学与工程学报, 2019, 16(12): 3041⁃3049.
Tang Qian-long, Tan Yuan, Peng Li-min, et al. On crack identification method for tunnel linings based on digital image technology[J]. Journal of Railway Science and Engineering 2019, 16(12): 3041⁃3049.
99 Adhikari R S, Moselhi O, Bagchi A. Image-based retrieval of concrete crack properties for bridge inspection[J]. Automation in Construction, 2014, 39: 180-194.
100 刘宇飞. 基于模型修正与图像处理的多尺度结构损伤识别[D]. 北京: 清华大学土木工程系, 2015.
Liu Yu-fei. Multi-scale structural damage assessment based on model updating and image processing[D]. Beijing: School of Civil Engineering, Tsinghua University, 2015.
101 杨世峰, 陈化祥, 李孝兵. 关于通过图像灰度判断裂缝宽度的研究[J]. 公路交通科技: 应用技术版, 2018, 14(3): 71-72.
Yang Shi-feng, Chen Hua-xiang, Li Xiao-bing. Research on judging crack width by image gray level[J]. Highway Traffic Technology (Applied Technology Edition), 2018, 14(3): 71-72.
102 余鑫. 复杂背景下桥梁裂缝检测算法研究与应用[D]. 西安: 长安大学信息工程学院, 2021.
Yu Xin. Research and application of bridge crack detection algorithm under complex background[D]. Xi'an: School of Information Engineering, Chang'an University, 2021.
103 胡世昆. 基于数字图像处理技术的路面裂缝检测算法研究[D]. 南京: 南京邮电大学通信与信息工程学院, 2012.
Hu Shi-kun. Research on pavement crack detection algorithom based on digital image processing[D]. Nanjing: College of Communication and information engineering, Nanjing University of Posts and Telecommunications, 2012.
104 Andrew A M. Multiple view geometry in computer vision[J]. Kybernetes, 2001, 30(9/10): 1333-1341.
105 James M R, Robson S. Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(3): 002289.
106 Furukawa Y, Curless B, Seitz S M, et al. Towards internet-scale multi-view stereo[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, America, 2010: 1434-1441.
107 Jahanshahi M R, Masri S F. Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures[J]. Automation in Construction, 2012, 22: 567-576.
108 刘宇飞, 樊健生, 孔思宇, 等. 多视角几何三维重建法识别工程结构缺损与变形[J]. 工程力学, 2020, 37(9): 103-111.
Liu Yu-fei, Fan Jian-sheng, Kong Si-yu, et al. Detection of structural defect and deformation based on multi-view geometric three-dimensional reconstruction method[J]. Engineering Mechanics, 2020, 37(9): 103-111.
109 Liu Y F, Cho S, Spencer Jr B F, et al. Concrete crack assessment using digital image processing and 3D scene reconstruction[J]. Journal of Computing in Civil Engineering, 2016, 30(1): 04014124.
110 刘宇飞, 樊健生, 聂建国, 等. 结构表面裂缝数字图像法识别研究综述与前景展望[J]. 土木工程学报, 2021, 54(6): 79-98.
Liu Yu-fei, Fan Jian-sheng, Nie Jian-guo, et al. Review and prospect of digital-image-based crack detection of structure surface[J]. China Civil Engineering Journal, 2021, 54(6): 79-98.
111 陈金桥. 基于无人机图像的混凝土桥梁表观病害识别研究[D]. 南京: 东南大学建筑与土木工程学院, 2020.
Chen Jin-qiao. Research on recognition of apparent diseases of concrete bridges based on uav images[D]. Nanjing: College of Civil Engineering, Southeast University, 2020.
112 Ayele Y Z, Aliyari M, Griffiths D, et al. Automatic crack segmentation for UAV-assisted bridge inspection[J]. Energies, 2020, 13(23): 20206250.
113 Chen S, Laefer D F, Mangina E, et al. UAV bridge inspection through evaluated 3D reconstructions[J]. Energies, 2019, 24(4): 05019001.
114 张健俣. 利用BIM本体技术分析桥梁裂缝的研究[D]. 重庆: 重庆交通大学土木工程学院, 2018.
Zhang Jian-yu. A study on the implementation of BIM ontology on bridge cracks[D]. Chongqing: College of Civil Engineering, Chongqing Jiao tong University, 2018.
115 高兆东, 董凌峰, 丁幼亮. 基于BIM的桥梁裂缝信息管理可视化研究[J]. 市政技术, 2021, 39(4): 68-72.
Gao Zhao-dong, Dong Ling-feng, Ding You-liang. Research on visualization of information management of bridge cracks by BIM[J]. Municipal Technology, 2021, 39(4): 68-72.
116 Li X, Meng Q, Wei M, et al. Identification of underwater structural bridge damage and BIM-based bridge damage management[J]. Applied Sciences, 2023, 13(3): 02031348.
117 Kong X, Li J. Vision-based fatigue crack detection of steel structures using video feature tracking[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 783-799.
118 Valença J, Dias-da-Costa D, Júlio E, et al. Automatic crack monitoring using photogrammetry and image processing[J]. Measurement, 2013, 46(1): 433-441.
119 Bhowmick S, Nagarajaiah S, Veeraraghavan A. Vision and deep learning-based algorithms to detect and quantify cracks on concrete surfaces from UAV videos[J]. Sensors, 2020, 20(21): 20206299.
120 Reagan D, Sabato A, Niezrecki C. Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges[J]. Structural Health Monitoring, 2018, 17(5): 1056-1072.
121 Kong S Y, Fan J S, Liu Y F, et al. Automated crack assessment and quantitative growth monitoring[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(5): 656-674.
[1] 卫星,高亚杰,康志锐,刘宇辰,赵骏铭,肖林. 低温环境下栓钉环焊缝焊接残余应力场数值模拟[J]. 吉林大学学报(工学版), 2024, 54(1): 198-208.
[2] 陈岳林,高铸成,蔡晓东. 基于BERT与密集复合网络的长文本语义匹配模型[J]. 吉林大学学报(工学版), 2024, 54(1): 232-239.
[3] 龙关旭,张修石,辛公锋,王涛,杨干. 融合机器视觉的桥梁动态称重方法[J]. 吉林大学学报(工学版), 2024, 54(1): 188-197.
[4] 谭国金,欧吉,艾永明,杨润超. 基于改进DeepLabv3+模型的桥梁裂缝图像分割方法[J]. 吉林大学学报(工学版), 2024, 54(1): 173-179.
[5] 左新黛,张劲泉,赵尚传. 在役混凝土T梁疲劳刚度退化及寿命预测方法[J]. 吉林大学学报(工学版), 2023, 53(9): 2563-2572.
[6] 肖明尧,李雄飞,朱芮. 基于NSST域像素相关分析的医学图像融合[J]. 吉林大学学报(工学版), 2023, 53(9): 2640-2648.
[7] 安然,王有志. 剪力钉连接件拉剪共同作用抗剪性能[J]. 吉林大学学报(工学版), 2023, 53(9): 2554-2562.
[8] 霍光,林大为,刘元宁,朱晓冬,袁梦,盖迪. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600.
[9] 金小俊,孙艳霞,于佳琳,陈勇. 基于深度学习与图像处理的蔬菜苗期杂草识别方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2421-2429.
[10] 车翔玖,徐欢,潘明阳,刘全乐. 生物医学命名实体识别的两阶段学习算法[J]. 吉林大学学报(工学版), 2023, 53(8): 2380-2387.
[11] 耿庆田,刘植,李清亮,于繁华,李晓宁. 基于一种深度学习模型的土壤湿度预测[J]. 吉林大学学报(工学版), 2023, 53(8): 2430-2436.
[12] 巫威眺,曾坤,周伟,李鹏,靳文舟. 基于多源数据和响应面优化的公交客流预测深度学习方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2001-2015.
[13] 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1612-1620.
[14] 顾正伟,张攀,吕东冶,吴春利,杨忠,谭国金,黄晓明. 基于数值仿真的简支梁桥震致残余位移分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1711-1718.
[15] 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!