吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (2): 313-332.doi: 10.13229/j.cnki.jdxbgxb.20221475
• 综述 •
Guo-jun YANG1,2(),Ya-hui QI1,Xiu-ming SHI1
摘要:
传统的桥梁裂缝检测主要基于人眼识别,检测效率、精度低,而且人眼识别存在受光照影响大、桥塔、高墩等高空位置无法检测及主观性强的问题。近年来,国内外诸多学者为了解决上述问题,研发了许多基于数字图像技术的桥梁裂缝检测设备,像搭载高清相机的桥梁检测车、无人机、爬墩机器人等。同时,拥有高效、高精度的裂缝检测算法更是裂缝检测的基础,如何权衡检测速度与精度一直也是众多学者研究的热点问题之一。本文就近年来国内外基于数字图像技术的桥梁裂缝检测设备、相机的搭载平台与标定方法、预处理算法、传统检测算法、深度学习算法、裂缝特征计算、图像拼接算法以及裂缝的三维输出与监测等方面展开综合评述。此外,对研究过程中存在的不足进行了总结,并从桥梁裂缝检测方法、裂缝三维表达、裂缝的监测跟踪管理和桥梁刚度损失评价及预警等方面进行了展望。
中图分类号:
1 | Spencer B F, Hoskere V, Narazaki Y. Advances in computer vision-based civil infrastructure inspection and monitoring[J]. Engineering, 2019, 5(2): 199-222. |
2 | 钟新谷, 彭雄, 沈明燕. 基于无人飞机成像的桥梁裂缝宽度识别可行性研究[J]. 土木工程学报, 2019, 52(4): 52-61. |
Zhong Xin-gu, Peng Xiong, Shen Ming-yan. Study on the feasibility of identifying concrete crack width with images acquired by unmanned aerial vehicles[J]. China Civil Engineering Journal, 2019, 52(4): 52-61. | |
3 | Sanchez-Cuevas P J, Ramon-Soria P, Arrue B, et al. Robotic system for inspection by contact of bridge beams using UAVs[J]. Sensors, 2019, 19(2): 305. |
4 | Jang K, An Y K, Kim B, et al. Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(1): 14-29. |
5 | Leibbrandt A, Caprari G, Angst U, et al. Climbing robot for corrosion monitoring of reinforced concrete structures[C]∥2nd International Conference on Applied Robotics for the Power Industry, Zurich, Switzerland, 2012: 10-15. |
6 | 秦海伟. 基于图像处理的桥梁裂缝识别及测量[D]. 上海: 上海交通大学船舶海洋与建筑工程学院, 2020. |
Qin Hai-wei. Identification and measurement of bridge cracks based on image processing[D]. Shanghai: School of Naval Architecture, Ocean and Civil Engineering of Shanghai Jiao Tong University, 2020. | |
7 | Liu Y F, Nie X, Fan J S, et al. Image-based crack assessment of bridge piers using unmanned aerial vehicles and three dimensional scene reconstruction[J]. Computer Aided Civil and Infrastructure Engineering, 2020, 35(5): 511-529. |
8 | Xie R, Yao J, Liu K, et al. Automatic multi-image stitching for concrete bridge inspection by combining point and line features[J]. Automation in Construction, 2018, 90: 265-280. |
9 | 谢文高, 张怡孝, 刘爱荣, 等. 基于水下机器人与数字图像技术的混凝土结构表面裂缝检测方法[J]. 工程力学, 2022, 39(): 64-70. |
Xie Wen-gao, Zhang Yi-xiao, Liu Ai-rong, et al. Method for concrete surface cracking detection based on rov and digital image technology[J]. Engineering Mechanics, 2022, 39(Sup.1): 64-70. | |
10 | Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. |
11 | Hartley R I. Self-calibration of stationary cameras[J]. International Journal of Computer Vision, 1997, 22(1): 5-23. |
12 | 杨长江, 汪威, 胡占义. 一种基于主动视觉的摄像机内参数自定标方法[J]. 计算机学报, 1998(5): 428-435. |
Yang Chang-jiang, Wang wei, Hu Zhan-yi. A self-calibration method for camera internal parameters based on active vision[J]. Chinese Journal of Computers, 1998, 21(5): 428-435. | |
13 | Hartley R I. Projective reconstruction and invariants from multiple images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(10):1036-1041. |
14 | 杨亚男. 基于图像序列的摄像机自标定方法研究[D]. 绵阳: 西南科技大学计算机科学与技术学院, 2020. |
Yang Ya-nan. Research on camera self-calibration method based on image sequence[D]. Mianyang: School of Computer Science and Technology, Southwest University of Science and Technology, 2020. | |
15 | Hartley R I, Hayman E, de Agapito L, et al. Camera calibration and the search for infinity[C]∥Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999: 510-517. |
16 | Wen J, Schweitzer G. Hybrid calibration of CCD cameras using artificial neural nets[C]∥1991 IEEE International Joint Conference on Neural Networks, Singapore, 1991: 337-342. |
17 | Jin L G, Rui L G. Camera calibration for monocular vision system based on Harris corner extraction and neural network[C]∥International Conference on Consumer Electronics, Communications and Networks, Xianning, China, 2011: 1-4. |
18 | Ding X Z. Research on kinect calibration and depth error compensation based on BP neural network[C]∥International Conference on Computer Vision, Image and Deep Learning, Chongqing, China, 2020: 596-600. |
19 | 胡志新, 王涛. 改进遗传算法优化BP神经网络的双目相机标定[J]. 电光与控制, 2022, 29(1): 75-79. |
Hu Zhi-xin, Wang Tao. Improved genetic algorithm to optimize binocular camera calibration of BP neural network[J]. Electronics Optics & Control, 2022, 29(1): 75-79. | |
20 | 丁威, 俞珂, 舒江鹏. 基于深度学习和无人机的混凝土结构裂缝检测方法[J]. 土木工程学报, 2021, 54(): 1-12. |
Ding Wei, Yu Ke, Shu Jang-peng. Method for detecting cracks in concrete structures based on deep learning and UAV[J]. China Civil Engineering Journal, 2021, 54(Sup.1): 1-12. | |
21 | 丁威. 基于图像的桥梁裂缝检测理论与实践[D]. 广州: 华南理工大学土木与交通学院, 2020. |
Ding Wei. Theory and practice of bridge crack detection based on image[D]. Guangzhou: School of Civil Engineering and Transportation, South China University of Technology, 2020. | |
22 | 李若星. 基于机器视觉的混凝土裂缝检测方法研究[D]. 重庆: 重庆大学建设管理与房地产学院, 2018. |
Li Ruo-xing. A machine vision based method for concrete crack detection[D]. Chongqing: School of Management Science and Real Estate, Chongqing University, 2018. | |
23 | 王密, 潘俊. 一种数字航空影像的匀光方法[J]. 中国图象图形学报, 2004(6): 104-108. |
Wang Mi, Pan Jun. A method of removing the uneven illumination for digital aerial image[J]. Journal of Image and Graphics, 2004(6): 104-108. | |
24 | 姚芳, 万幼川, 胡晗. 基于Mask原理的改进匀光算法研究[J]. 遥感信息, 2013, 28(3): 8-13. |
Yao Fang, Wan You-chuan, Hu Han. Research on the improved image dodging algorithm based on mask technique[J]. Remote Sensing Information, 2013, 28(3): 8-13. | |
25 | 马丽莎. 基于数字图像处理的路面裂缝识别方法研究[D]. 南京: 东南大学交通学院, 2018. |
Ma Li-sha. Research on pavement crack recognition method based on digital image processing [D]. Nanjing: School of Transportation, Southeast University, 2018. | |
26 | 李晋惠. 公路路面裂缝类病害图像处理算法研究[J]. 计算机工程与应用, 2003, 39(35): 212-213. |
Li Jin-hui. Image processing algorithm for detecting the pavement crack diseases[J]. Computer Engineering and Applications, 2003, 39(35): 212-213, . | |
27 | 李辉, 蒋秀明, 高殿斌, 等. Matlab语言在数字图像中值滤波中的应用研究[J]. 天津工业大学学报, 2003, 22(1): 87-88. |
Li Hui, Jiang Xiu-ming, Gao Dian-bin, et al. Application and study of Matlab in image median filtering[J]. Journal of Tianjin Polytechnic University, 2003, 22(1): 87-88. | |
28 | 王松林. 一种改进的自适应加权中值去噪算法的研究[D]. 武汉: 武汉科技大学信息科技与工程学院, 2016. |
Wang Song-lin. Research on the improved adaptive weighted median denoising algorithm[D]. Wuhan: School of Information Technology and Engineering, Wuhan University of Science and Technology, 2016. | |
29 | 屈正庚, 牛少清. 一种改进的自适应加权中值滤波算法研究[J]. 计算机技术与发展, 2018, 28(12): 86-90. |
Qu Zheng-geng, Niu Shao-qing. Research on an improved adaptive weighted median filtering algorithm[J]. Computer Technology and Development, 2018, 28(12): 86-90. | |
30 | 张振海, 贾争满, 季坤. 基于改进的Otsu法的地铁隧道裂缝识别方法研究[J]. 重庆交通大学学报: 自然科学版, 2022, 41(1): 84-90. |
Zhang Zheng-hai, Jia Zheng-man, Ji Kun. Crack identification method of subway tunnel based on improved Otsu method[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(1): 84-90. | |
31 | 张雪峰, 闫慧. 基于中值滤波和分数阶滤波的图像去噪与增强算法[J]. 东北大学学报: 自然科学版, 2020, 41(4): 482-487. |
Zhang Xue-feng, Yan Hui. Image denoising and enhancement algorithm based on median filtering and fractional order filtering[J]. Journal of Northeastern University (Natural Science), 2020, 41(4): 482-487. | |
32 | Huang T, Yang G, Tang G. A fast two-dimensional median filtering algorithm[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, 27(1): 13-18. |
33 | 余博, 郭雷, 钱晓亮, 等. 一种新的自适应双边滤波算法[J]. 应用科学学报, 2012, 30(5): 517-523. |
Yu Bo, Guo Lei, Qian Xiao-liang, et al. A new adaptive bilateral filtering[J]. Journal of Applied Sciences, 2012, 30(5): 517-523. | |
34 | Lowe D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. |
35 | Brown M, Lowe D G. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74(1): 59-73. |
36 | 瞿中, 林嗣鹏, 鞠芳蓉. 一种改进的降低扭曲误差的快速图像拼接算法[J]. 计算机科学, 2016, 43(5): 279-282. |
Qu Zhong, Lin Si-peng, Ju Fang-rong. Improved algorithm of fast image stitching by reducing panoramic distortion[J]. Computer Science, 2016, 43(5): 279-282. | |
37 | Bay H, Ess A, Tuytelaars T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359. |
38 | Juan L, Gwun O. A comparison of sift, pca-sift and SURF[J]. International Journal of Image Processing (IJIP), 2009, 3(4): 143-152. |
39 | 金萍萍. 图像拼接和裂缝提取方法研究及在多足机器人桥梁检测中的应用[D]. 广州: 华南理工大学自动化科学与工程学院, 2015. |
Jin Ping-ping. Research on image mosaic and crack extraction method[D]. Guangzhou: School of Automation Science and Engineering, South China University of Technology, 2015. | |
40 | Efros A A, Freeman W T. Image quilting for texture synthesis and transfer[C]∥Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, New York, America, 2001: 341-346. |
41 | Avidan S, Shamir A. Seam carving for content-aware image resizing[J]. ACM Transactions on Graphics, 2007, 28(3): 10-15. |
42 | Wang R, Bu F, Jin H, et al. A feature-level image fusion algorithm based on neural networks[C]∥1st International Conference on Bioinformatics and Biomedical Engineering, Wuhan, China, 2007: 821-824. |
43 | Nishii R. A Markov random field-based approach to decision-level fusion for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2316-2319. |
44 | Huan R, Pan Y. Decision fusion strategies for SAR image target recognition[J]. IET Radar, Sonar & Navigation, 2011, 5(7): 747-755. |
45 | Bellman R, Kalaba R E. Dynamic Programming and Modern Control Theory[M]. New York: Academic Press, 1965. |
46 | Burt P J, Adelson E H. Readings in Computer Vision: Issues, Problems, Principles, and Paradigms[M]. Los Altos: Morgan Kaufmann, 1987. |
47 | Zhang Z, Blum R S. A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application[J]. Proceedings of the IEEE, 1999, 87(8): 1315-1326. |
48 | 李景玉, 张荣芬, 刘宇红. 基于小波变换的多尺度图像融合增强算法[J]. 光学技术, 2021, 47(2): 217-222. |
Li Jing-yu, Zhang Rong-fen, Liu Yu-hong. Multiscale image fusion and enhancement algorithm based on wavelet transform[J]. Optical Technique, 2021, 47(2): 217-222. | |
49 | Tian F, Shi P. Image mosaic using ORB descriptor and improved blending algorithm[C]∥7th International Congress on Image and Signal Processing, Dalian, China, 2014: 693-698. |
50 | Jia Y H. Fusion of lands at TM and SAR images based on principal component analysis[J]. Remote Sensing Technology and Application, 2012, 13(1): 46-49. |
51 | 肖化超, 周诠, 郑小松. 基于IHS变换和Curvelet变换的卫星遥感图像融合方法[J]. 华南理工大学学报: 自然科学版, 2016, 44(1): 58-64. |
Xiao Hua-chao, Zhou Quan, Zheng Xiao-song. Satellite remote sensing image fusion method based on IHS transform and Curvelet transform[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(1): 58-64. | |
52 | 张慧芳, 张鹏林, 晁剑. 使用多尺度模糊融合的高分影像变化检测[J]. 武汉大学学报: 信息科学版, 2022, 47(2): 296-303. |
Zhang Hui-fang, Zhang Peng-lin, Chao Jian. High-resolution image change detection using multi-scale blur fusion[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 296-303. | |
53 | Li S, Kwok J T, Wang Y. Multifocus image fusion using artificial neural networks[J]. Pattern Recognition Letters, 2002, 23(8): 985-997. |
54 | 林嗣鹏. 序列图像快速拼接和畸变消除算法研究[D]. 重庆: 重庆邮电大学计算机科学与技术学院, 2016. |
Lin Si-peng. Fast panorama stitching and reducing the distortion errors in image sequence[D]. Chongqing: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, 2016. | |
55 | 瞿中, 乔高元, 林嗣鹏. 一种消除图像拼接缝和鬼影的快速拼接算法[J]. 计算机科学, 2015, 42(3): 280-283. |
Qu Zhong, Qiao Gao-yuan, Lin Si-peng. Fast image stitching algorithm eliminates seam line and ghosting[J]. Computer Science, 2015, 42(3): 280-283. | |
56 | 于利存, 贺拴海, 蒋树庆, 等. 混凝土桥梁裂缝图像自动匹配、拼接与融合方法[J]. 长安大学学报: 自然科学版, 2022, 42(6): 33-41. |
Yu Li-cun, He Shuan-hai, Jiang Shu-qin, et al. Automatic matching, stitching and fusion method of concreate bridge crack images[J]. Journal of Chang'an University (Natural Science Edition), 2022, 42(6): 33-41. | |
57 | 吴俊杰. 基于无人机的桥梁图像拼接及缺陷检测算法研究[D]. 上海: 上海交通大学机械与动力工程学院, 2017. |
Wu Jun-jie. Picture stitching and defect detection for UAV based bridge inspection[D]. Shanghai: College of Mechanical Engineering, Shanghai Jiao Tong University, 2017. | |
58 | 王睿, 漆泰岳. 基于机器视觉检测的裂缝特征研究[J]. 土木工程学报, 2016, 49(7): 123-128. |
Wang Rui, Qi Tai-yue. Study on crack characteristics based on machine vision detection[J]. China Civil Engineering Journal, 2016, 49(7): 123-128. | |
59 | Shi Y, Cui L, Qi Z, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445. |
60 | 廖延娜, 李婉. 基于卷积神经网络的桥梁裂缝检测方法[J]. 计算机工程与设计, 2021, 42(8): 2366-2372. |
Liao Yan-na, Li Wan. Bridge crack detection method based on convolution neural network[J]. Computer Engineering and Design, 2021, 42(8): 2366-2372. | |
61 | Sheng P, Chen L, Tian J. Learning-based road crack detection using gradient boost decision tree[C]∥13th IEEE Conference on Industrial Electronics and Applications, Wuhan, China, 2018: 1228-1232. |
62 | 韩晓健, 赵志成. 基于计算机视觉技术的结构表面裂缝检测方法研究[J]. 建筑结构学报, 2018, 39(): 418-427. |
Han Xiao-jian, Zhao Zhi-cheng. Structural surface crack detection method based on computer vision technology[J]. Journal of Building Structures, 2018, 39(Sup.1): 418-427. | |
63 | 孟诗乔, 张啸天, 乔甦阳, 等. 基于深度学习的网格优化裂缝检测模型研究[J]. 建筑结构学报, 2020, 41(): 404-410. |
Meng Shi-qiao, Zhang Xiao-tian, Qiao Su-yang, et al. Research on grid optimized crack detection model based on deep learning[J]. Journal of Building Structures, 2020, 41(Sup.2): 404-410. | |
64 | 杨杰文, 章光, 陈西江, 等. 基于深度学习的较复杂背景下桥梁裂缝检测[J]. 铁道科学与工程学报, 2020, 17(11): 2722-2728. |
Yang Jie-wen, Zhang Guang, Chen Xi-jiang, et al. Research on bridge crack detection based on deep learning under complex background[J]. Journal of Railway Science and Engineering, 2020, 17(11): 2722-2728. | |
65 | 朱苏雅, 杜建超, 李云松, 等. 采用U-Net卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报, 2019, 46(4): 35-42. |
Zhu Su-ya, Du Jian-chao, Li Yun-song, et al. Method for bridge crack detection based on the U-Net convolutional networks[J]. Journal of Xidian University, 2019, 46(4): 35-42. | |
66 | 余加勇, 李锋, 薛现凯, 等. 基于无人机及Mask R-CNN的桥梁结构裂缝智能识别[J]. 中国公路学报, 2021, 34(12): 80-90. |
Yu Jia-yong, Li Feng, Xue Xian-kai, et al. Intelligent identification of bridge structural cracks based on unmanned aerial vehicle and Mask R-CNN[J]. China Journal of Highway and Transport, 2021, 34(12): 80-90. | |
67 | 余加勇, 刘宝麟, 尹东, 等. 基于YOLOv5和U-Net3+的桥梁裂缝智能识别与测量[J]. 湖南大学学报: 自然科学版, 2023, 50(5): 65-73. |
Yu Jia-yong, Liu Bao-lin, Yin Dong, et al. Intelligent identification and measurement of bridge cracks based on YOLOv5 and U-Net3+[J]. Journal of Hunan University (Natural Sciences), 2023, 50(5): 65-73. | |
68 |
谭国金, 欧吉, 艾永明, 等. 基于改进DeepLabv3+模型的桥梁裂缝图像分割方法[J/OL]. [2022-10-09]. DOI: 10.13229/j.cnki.jdxbgxb20220205
doi: 10.13229/j.cnki.jdxbgxb20220205 |
Tan Guo-jin, Ji Ou, Ai Yong-ming, et al. Bridge crack image segmentation method based on improved Deep Labv3+ model[J/OL]. [2022-10-09]. DOI: 10.13229/j.cnki.jdxbgxb20220205
doi: 10.13229/j.cnki.jdxbgxb20220205 |
|
69 | 张振海, 季坤, 党建武, 等. 基于BCEM模型的桥梁裂缝病害识别方法[J]. 吉林大学学报: 工学版, 2023, 53(5): 1418-1426. |
Zhang Zhen-hai, Ji Kun, Dang Jian-wu, et al. Research on a crack identification method for bridge based on BCEM model[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1418-1426. | |
70 | Jiang P, Ergu D, Liu F, et al. A review of yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073. |
71 | Liu W, Anguelov D, Erhan D, et al. SSD: Single Shot Multibox Detector[M]. Cham: Springer International Publishing, 2016. |
72 | Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
73 | Dung C V. Autonomous concrete crack detection using deep fully convolutional neural network[J]. Automation in Construction, 2019, 99: 52-58. |
74 | 刘凡, 王君锋, 陈峙宇, 等. 基于并行注意力UNet的裂缝检测方法[J]. 计算机研究与发展, 2021, 58(8): 1718-1726. |
Liu Fan, Wang Jun-feng, Chen Zhi-yu, et al. Parallel attention based UNet for crack detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1718-1726. | |
75 | 李良福, 孙瑞赟. 复杂背景下基于图像处理的桥梁裂缝检测算法[J]. 激光与光电子学进展, 2019, 56(6): 112-122. |
Li Liang-fu, Sun Rui-yun. Bridge crack detection algorithm based on image processing under complex background[J]. Laser & Optoelectronics Progress, 2019, 56(6): 112-122. | |
76 | 王桂平, 陈旺桥, 杨建喜, 等. 基于迁移学习的桥梁表观病害检测技术研究[J]. 铁道科学与工程学报, 2022, 19(6): 1638-1646. |
Wang Gui-ping, Chen Wang-qiao, Yang Jian-xi, et al. A bridge surface distress detection technology based on transfer learning[J]. Journal of Railway Science and Engineering, 2022, 19(6): 1638-1646. | |
77 | Hsieh Y A, Tsai Y J. Machine learning for crack detection: review and model performance comparison [J]. Journal of Computing in Civil Engineering, 2020, 34(5): 04020038. |
78 | Li L F, Ma W, Li L, et al. Research on bridge crack detection algorithm based on deep learning[J]. Acta Automatica Sinica, 2019, 45(9): 1727-1742. |
79 | Zhang L, Yang F, Zhang Y D, et al. Road crack detection using deep convolutional neural network[C]∥IEEE International Conference on Image Processing, New York, America, 2016: 3708-3712. |
80 | Dorafshan S, Thomas R J, Maguire M. SDNET2018: an annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks[J]. Data in Brief, 2018, 21: 1664-1668. |
81 | Xu H, Su X, Wang Y, et al. Automatic bridge crack detection using a convolutional neural network[J]. Applied Sciences, 2019, 9(14): 2867. |
82 | Liu Y, Yao J, Lu X, et al. Deep crack: a deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338: 139-153. |
83 | Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. |
84 | 初秀民, 严新平, 陈先桥. 路面破损图像二值化方法研究[J]. 计算机工程与应用, 2008, 44(28): 161-165. |
Chu Xiu-min, Yan Xin-ping, Chen Xian-qiao. Study of pavement surface distr ess image binarization[J]. Computer Engineering and Applications, 2008, 44(28): 161-165. | |
85 | Kirschke K, Velinsky S. Histogram-based approach for automated pavement-crack sensing[J]. Journal of Transportation Engineering, 1992, 118(5): 700-710. |
86 | Devi M P A, Latha T, Sulochana C H. Iterative thresholding based image segmentation using 2D improved Otsu algorithm[C]∥Communication Technologies, Thuckalay, India, 2015: 145-149. |
87 | 伯绍波, 闫茂德, 孙国军, 等. 沥青路面裂缝检测图像处理算法研究[J]. 微计算机信息, 2007, 23(15): 280-282. |
Bo Shao-bo, Yan Mao-de, Sun Guo-jun, et al. Research on crack detection image processing algorithm for asphalt pavement surface[J]. Control & Management, 2007, 23(15): 280-282. | |
88 | 宋平丽. 基于视频图像的桥梁裂缝检测[D]. 武汉: 武汉理工大学计算机科学与技术学院, 2010. |
Song Ping-li. Crack detection of bridge on video image[D]. Wuhan: College of Computer Science and Technology, Wuhan University of Technology, 2010. | |
89 | 徐欢, 李振璧, 姜媛媛, 等. 基于Open CV和改进 Canny算子的路面裂缝检测[J]. 计算机工程与设计, 2014, 35(12): 4254-4258. |
Xu Huan, Li Zhen-bi, Jiang Yuan-yuan, et al. Pavement crack detection based on Open CV and improved Canny operator[J]. Computer Engineering and Design, 2014, 35(12): 4254-4258. | |
90 | Yamaguchi T, Hashimoto S. Automated crack detection for concrete surface image using percolation model and edge information[C]∥IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 2006: 3355-3360. |
91 | Yamaguchi T, Hashimoto S. Image processing based on percolation model[J]. IEICE Transactions on Information and Systems, 2006, 89(7): 2044-2052. |
92 | Yamaguchi T, Hashimoto S. Fast crack detection method for large-size concrete surface images using percolation-based image processing[J]. Machine Vision and Applications 2010, 21(5): 797-809. |
93 | Qu Z, Lin L D, Guo Y, et al. An improved algorithm for image crack detection based on percolation model[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2015, 10(2): 214-221. |
94 | Peleg S, Rosenfeld A. A min-max medial axis transformation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981(2): 208-210. |
95 | 王龙云. 路面裂缝检测算法研究[D]. 南京: 南京邮电大学通信与信息工程学院, 2012. |
Wang Yun-long. Research on pavement crack detection algorithm[D]. Nanjing: College of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, 2012. | |
96 | Zhang T Y, Suen C Y. A fast parallel algorithm for thinning digital patterns[J]. Communications of the ACM, 1984, 27(3): 236-239. |
97 | 周颖, 刘彤. 基于计算机视觉的混凝土裂缝识别[J]. 同济大学学报: 自然科学版, 2019, 47(9): 1277-1285. |
Zhou Ying, Liu Tong. Computer vision-based crack detection and measurement on concrete structure[J]. Journal of Tongji University(Natural Science), 2019, 47(9): 1277-1285. | |
98 | 唐钱龙, 谭园, 彭立敏, 等. 基于数字图像技术的隧道衬砌裂缝识别方法研究[J]. 铁道科学与工程学报, 2019, 16(12): 3041⁃3049. |
Tang Qian-long, Tan Yuan, Peng Li-min, et al. On crack identification method for tunnel linings based on digital image technology[J]. Journal of Railway Science and Engineering 2019, 16(12): 3041⁃3049. | |
99 | Adhikari R S, Moselhi O, Bagchi A. Image-based retrieval of concrete crack properties for bridge inspection[J]. Automation in Construction, 2014, 39: 180-194. |
100 | 刘宇飞. 基于模型修正与图像处理的多尺度结构损伤识别[D]. 北京: 清华大学土木工程系, 2015. |
Liu Yu-fei. Multi-scale structural damage assessment based on model updating and image processing[D]. Beijing: School of Civil Engineering, Tsinghua University, 2015. | |
101 | 杨世峰, 陈化祥, 李孝兵. 关于通过图像灰度判断裂缝宽度的研究[J]. 公路交通科技: 应用技术版, 2018, 14(3): 71-72. |
Yang Shi-feng, Chen Hua-xiang, Li Xiao-bing. Research on judging crack width by image gray level[J]. Highway Traffic Technology (Applied Technology Edition), 2018, 14(3): 71-72. | |
102 | 余鑫. 复杂背景下桥梁裂缝检测算法研究与应用[D]. 西安: 长安大学信息工程学院, 2021. |
Yu Xin. Research and application of bridge crack detection algorithm under complex background[D]. Xi'an: School of Information Engineering, Chang'an University, 2021. | |
103 | 胡世昆. 基于数字图像处理技术的路面裂缝检测算法研究[D]. 南京: 南京邮电大学通信与信息工程学院, 2012. |
Hu Shi-kun. Research on pavement crack detection algorithom based on digital image processing[D]. Nanjing: College of Communication and information engineering, Nanjing University of Posts and Telecommunications, 2012. | |
104 | Andrew A M. Multiple view geometry in computer vision[J]. Kybernetes, 2001, 30(9/10): 1333-1341. |
105 | James M R, Robson S. Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(3): 002289. |
106 | Furukawa Y, Curless B, Seitz S M, et al. Towards internet-scale multi-view stereo[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, America, 2010: 1434-1441. |
107 | Jahanshahi M R, Masri S F. Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures[J]. Automation in Construction, 2012, 22: 567-576. |
108 | 刘宇飞, 樊健生, 孔思宇, 等. 多视角几何三维重建法识别工程结构缺损与变形[J]. 工程力学, 2020, 37(9): 103-111. |
Liu Yu-fei, Fan Jian-sheng, Kong Si-yu, et al. Detection of structural defect and deformation based on multi-view geometric three-dimensional reconstruction method[J]. Engineering Mechanics, 2020, 37(9): 103-111. | |
109 | Liu Y F, Cho S, Spencer Jr B F, et al. Concrete crack assessment using digital image processing and 3D scene reconstruction[J]. Journal of Computing in Civil Engineering, 2016, 30(1): 04014124. |
110 | 刘宇飞, 樊健生, 聂建国, 等. 结构表面裂缝数字图像法识别研究综述与前景展望[J]. 土木工程学报, 2021, 54(6): 79-98. |
Liu Yu-fei, Fan Jian-sheng, Nie Jian-guo, et al. Review and prospect of digital-image-based crack detection of structure surface[J]. China Civil Engineering Journal, 2021, 54(6): 79-98. | |
111 | 陈金桥. 基于无人机图像的混凝土桥梁表观病害识别研究[D]. 南京: 东南大学建筑与土木工程学院, 2020. |
Chen Jin-qiao. Research on recognition of apparent diseases of concrete bridges based on uav images[D]. Nanjing: College of Civil Engineering, Southeast University, 2020. | |
112 | Ayele Y Z, Aliyari M, Griffiths D, et al. Automatic crack segmentation for UAV-assisted bridge inspection[J]. Energies, 2020, 13(23): 20206250. |
113 | Chen S, Laefer D F, Mangina E, et al. UAV bridge inspection through evaluated 3D reconstructions[J]. Energies, 2019, 24(4): 05019001. |
114 | 张健俣. 利用BIM本体技术分析桥梁裂缝的研究[D]. 重庆: 重庆交通大学土木工程学院, 2018. |
Zhang Jian-yu. A study on the implementation of BIM ontology on bridge cracks[D]. Chongqing: College of Civil Engineering, Chongqing Jiao tong University, 2018. | |
115 | 高兆东, 董凌峰, 丁幼亮. 基于BIM的桥梁裂缝信息管理可视化研究[J]. 市政技术, 2021, 39(4): 68-72. |
Gao Zhao-dong, Dong Ling-feng, Ding You-liang. Research on visualization of information management of bridge cracks by BIM[J]. Municipal Technology, 2021, 39(4): 68-72. | |
116 | Li X, Meng Q, Wei M, et al. Identification of underwater structural bridge damage and BIM-based bridge damage management[J]. Applied Sciences, 2023, 13(3): 02031348. |
117 | Kong X, Li J. Vision-based fatigue crack detection of steel structures using video feature tracking[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 783-799. |
118 | Valença J, Dias-da-Costa D, Júlio E, et al. Automatic crack monitoring using photogrammetry and image processing[J]. Measurement, 2013, 46(1): 433-441. |
119 | Bhowmick S, Nagarajaiah S, Veeraraghavan A. Vision and deep learning-based algorithms to detect and quantify cracks on concrete surfaces from UAV videos[J]. Sensors, 2020, 20(21): 20206299. |
120 | Reagan D, Sabato A, Niezrecki C. Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges[J]. Structural Health Monitoring, 2018, 17(5): 1056-1072. |
121 | Kong S Y, Fan J S, Liu Y F, et al. Automated crack assessment and quantitative growth monitoring[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(5): 656-674. |
[1] | 卫星,高亚杰,康志锐,刘宇辰,赵骏铭,肖林. 低温环境下栓钉环焊缝焊接残余应力场数值模拟[J]. 吉林大学学报(工学版), 2024, 54(1): 198-208. |
[2] | 陈岳林,高铸成,蔡晓东. 基于BERT与密集复合网络的长文本语义匹配模型[J]. 吉林大学学报(工学版), 2024, 54(1): 232-239. |
[3] | 龙关旭,张修石,辛公锋,王涛,杨干. 融合机器视觉的桥梁动态称重方法[J]. 吉林大学学报(工学版), 2024, 54(1): 188-197. |
[4] | 谭国金,欧吉,艾永明,杨润超. 基于改进DeepLabv3+模型的桥梁裂缝图像分割方法[J]. 吉林大学学报(工学版), 2024, 54(1): 173-179. |
[5] | 左新黛,张劲泉,赵尚传. 在役混凝土T梁疲劳刚度退化及寿命预测方法[J]. 吉林大学学报(工学版), 2023, 53(9): 2563-2572. |
[6] | 肖明尧,李雄飞,朱芮. 基于NSST域像素相关分析的医学图像融合[J]. 吉林大学学报(工学版), 2023, 53(9): 2640-2648. |
[7] | 安然,王有志. 剪力钉连接件拉剪共同作用抗剪性能[J]. 吉林大学学报(工学版), 2023, 53(9): 2554-2562. |
[8] | 霍光,林大为,刘元宁,朱晓冬,袁梦,盖迪. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600. |
[9] | 金小俊,孙艳霞,于佳琳,陈勇. 基于深度学习与图像处理的蔬菜苗期杂草识别方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2421-2429. |
[10] | 车翔玖,徐欢,潘明阳,刘全乐. 生物医学命名实体识别的两阶段学习算法[J]. 吉林大学学报(工学版), 2023, 53(8): 2380-2387. |
[11] | 耿庆田,刘植,李清亮,于繁华,李晓宁. 基于一种深度学习模型的土壤湿度预测[J]. 吉林大学学报(工学版), 2023, 53(8): 2430-2436. |
[12] | 巫威眺,曾坤,周伟,李鹏,靳文舟. 基于多源数据和响应面优化的公交客流预测深度学习方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2001-2015. |
[13] | 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1612-1620. |
[14] | 顾正伟,张攀,吕东冶,吴春利,杨忠,谭国金,黄晓明. 基于数值仿真的简支梁桥震致残余位移分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1711-1718. |
[15] | 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565. |
|