Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2695-2705.doi: 10.13229/j.cnki.jdxbgxb.20211178

Previous Articles     Next Articles

Field turning mechanism and performance test of crawler reclaimed rice harvester

Wei-jian LIU(),Xi-wen LUO,Shan ZENG(),Zhi-qiang WEN,Li ZENG   

  1. Key Laboratory of Key Technology on Agricultural Machine and Equipment,Ministry of Education,South China Agricultural University,Guangzhou 510642,China
  • Received:2021-11-09 Online:2023-09-01 Published:2023-10-09
  • Contact: Shan ZENG E-mail:531964726@qq.com;shanzeng@scau.edu.cn

Abstract:

In order to further explore the turning performance of ratooning rice harvester in the field, the relationship between turning radius and narrow track subsidence was comprehensively analyzed. The basic principle of field turning of tracked ratooning rice harvester was analyzed, and the driving force, slip rate, track subsidence and driving resistance of narrow track were calculated. The functional relationship between turning radius and narrow track subsidence was obtained by RecurDyn analysis. The simulation results show that with the increase of the turning radius, the driving wheel torque and narrow track subsidence on both sides decrease. The driving wheel torque deceased from 5835 N·m to 672.3 N·m. The peak values of driving wheel torque and narrow track subsidence were at the turning radius of 0. The reliability of the simulation results was verified by field experiments, the results show that with the increased of turning radius, the subsidence decreased from 186.24 mm to 103.57 mm. The experimental phenomena and calculation results were consistent with the RecurDyn simulation, proving the simulation results are reliable. This study can provide a reference for the turning theory research of ratooning rice harvester in the later period.

Key words: agricultural mechanization engineering, ratooning rice, narrow track, turning radius, subsidence, virtual prototype

CLC Number: 

  • S225.4

Table 1

Parameters of ratooning rice harvester"

参数数值参数数值
整机尺寸(长×宽×高)/(mm×mm×mm)4870×2500×2960接地长度/mm1873
履带宽度/mm280驱动轮半径/mm194.5
割台宽度/mm2000轨距/mm1600
履齿节距/mm90

作业速度/

(m·s-1

0~2.5
履刺高度/mm29整机质量/kg2950
重心高度/mm875液压系统结构双泵双马达

Fig.1

Basic principle of turning of ratooning rice harvester"

Fig.2

Influence of track slip on turning radius"

Fig.3

Turning model of ratooning rice harvester"

Fig.4

Driving wheel torque-turning radius"

Fig.5

Virtual prototype model of ratooning rice harvester"

Fig.6

Track diagram of left and right crawlers"

Fig.7

Relationship between parameters of straight track and turning track"

Fig.8

Driving wheel torque-turning radius"

Fig.9

Simulation analysis of turning radius and track settlement"

Fig.10

Sinkage test of plate"

Fig.11

Logarithmic fitting chart of pressure-sinkage"

Fig.12

Field experiment"

Table 2

Test result"

序号转弯半径R/mm

内侧驱动轮转速

n1/(r·min-1

外侧驱动轮转速n2/(r·min-1速度或角速度/ (m·s-1)或(rad·s-1外侧驱动轮转矩M1/(N·m)内侧驱动轮转矩M2/(N·m)窄履沉陷量Z1/mm仿真结果Z/mm
1090.3193.120.595678.735736.84186.24211.87
2800098.200.382843.302143.54174.65186.11
32 84017.4396.650.282760.432030.30160.82174.87
43 13024.6497.750.262480.461790.39159.32170.28
54 12032.1694.230.182365.321643.54156.40168.97
67 44047.1896.560.142065.451264.54150.31164.77
711 35063.1893.670.101570.561020.35145.54156.12
821 72077.4294.670.071254.80978.53130.47141.87
930 15084.9396.380.041045.65884.65116.47124.32
10101.8199.171.37738.73753.32103.57111.39
1 王飞, 彭少兵. 水稻绿色高产栽培技术研究进展[J]. 生命科学, 2018, 30(10): 1129-1136.
Wang Fei, Peng Shao-bing. Research progress in rice green and high-yield management practices[J]. Chinese Bulletin of Life Sciences, 2018, 30(10): 1129-1136.
2 徐富贤, 熊洪, 张林, 等. 再生稻产量形成特点与关键调控技术研究进展[J]. 中国农业科学, 2015, 48(9): 1702-1717.
Xu Fu-xian, Xiong Hong, Zhang Lin, et al. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies[J]. Scientia Agricultura Sinica, 2015, 48(9): 1702-1717.
3 曾山, 黄登攀, 杨文武,等. 三角履带式再生稻收割机底盘的设计与试验[J]. 吉林大学学报: 工学版, 2022, 52(8): 1943-1950.
Zeng Shan, Huang Deng-pan, Yang Wen-wu, et al. Design and test of the chassis of triangular crawler reclaiming rice harvester[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(8): 1943-1950.
4 刘伟健, 罗锡文, 曾山, 等. 基于模糊PID控制的再生稻自适应仿形割台性能试验与分析[J]. 农业工程学报, 2022, 38(10): 1-9.
Liu Wei-jian, Luo Xi-wen, Zeng Shan, et al. Performance test and analysis of the self-adaptive profiling header for ratooning rice based on fuzzy PID control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(10): 1-9.
5 张国忠, 张翼翔, 黄见良, 等. 再生稻割穗机的设计与性能试验[J]. 华中农业大学学报, 2016, 35(1): 131-136.
Zhang Guo-zhong, Zhang Yi-xiang, Huang Jian-liang, et al. Design and performance testing a novel head spike harvester of ratoon rice[J]. Journal of Huazhong Agriculturall University, 2016, 35(1): 131-136.
6 付建伟, 张国忠, 谢干, 等. 双通道喂入式再生稻收获机研制[J]. 农业工程学报,2020, 36(3): 11-20.
Fu Jian-wei, Zhang Guo-zhong, Xie Gan, et al. Development of double-channel feeding harvester for ratoon rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 11-20.
7 雷志强, 张国忠, 彭少兵, 等. 全履带式再生稻收割机行走底盘碾压率的模拟与分析[J]. 安徽农业大学学报, 2017, 44(4): 738-743.
Lei Zhi-qiang, Zhang Guo-zhong, Peng Shao-bing, et al. Simulation and analysis of the stubble pushing rate by chassis of the completely tracked harvester for the ratoon rice[J]. Journal of Anhui Agricultural University, 2017, 44(4): 738-743.
8 Wong J Y. Theory of Ground Vehicles[M]. New york: John Wiley & Sons, 1993.
9 Wong J Y, Chiang C F. A general theory for skid steering of tracked vehicles on firm ground[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2001, 215(3): 343-355.
10 Wong J Y, Huang W. "Wheels vs. tracks"-a fundamental evaluation from the traction perspective[J]. Journal of Terramechanics, 2006, 52(43): 27-43.
11 Rahman A, Yahya A, Zohadie M. Design parameters optimization simulation of a prototype segmented rubber track vehicle for Sepang peat in Malaysia[J]. American Journal of Applied Sciences, 2005, 2(3): 655-671.
12 杨聪彬, 董明明, 顾亮, 等. 考虑履刺形状的履带板土壤推力研究[J]. 北京理工大学学报, 2015, 35(11): 22-25.
Yang Cong-bin, Dong Ming-ming, Gu Liang, et al. Research on soil shear strength considering the shape of grouse[J]. Trancsactions of Beijing Institute of Technology, 2015, 35(11): 22-25.
13 宋振家. 坚实地面上均布载荷时的履带车辆转弯理论[J]. 装甲兵技术学院教学与科研, 1980, 10(3): 1-10.
Song Zhen-jia. Steering theory of tracked vehicle with uniformpressure distribution on hard land[J]. Armored Force Technologi-cal Institute Education and Scientific Reaserch, 1980, 10(3): 1-10.
14 程军伟, 高连华, 王红岩, 等. 履带车辆转弯分析[J]. 兵工学报, 2007, 10(9): 1110-1115.
Cheng Jun-wei, Gao Lian-hua, Wang Hong-yan. Analysis on the steering of tracked vehicles[J]. Acta Armamentarii, 2007, 10(9): 1110-1115.
15 Laura E Ray. Estimation of terrain forces and parameters for rigid-wheeled vehicles[J]. IEEE Transactions on Robotics and Automation, 2009, 25(3): 717-726.
16 Pentzer J, Brennan S N, Reichard K M. Model-based prediction of skid-steer robot kinematics using online estimation of track instantaneous centers of rotation[J]. Journal of Field Robotics, 2014, 31(3): 455-476.
17 Martínez J L, Mandow A, Morales J, et al. Approximating kinematics for tracked mobile robots[J]. The International Journal of Robotics Research, 2005, 24(10): 867-878.
18 Lyasko Modest. Slip sinkage effect in soil-vehicle mechanics[J]. Journal of Terramechanics, 2010, 47(1): 21-31.
19 李西秦, 刘冰, 齐劲峰. 车轮动力半径与滑转率的研究[J]. 拖拉机与农用运输车, 2002, 28(2): 17-20.
Li Xi-qin, Liu Bing, Qi Jin-feng. Research on wheel radius and slippage[J]. Tractors & Agricultural Vehicles, 2002, 28(2): 17-20.
20 杨财, 宋健, 周艳霞. 车辆转弯时牵引力控制系统前轮滑转率算法[J]. 农业机械学报, 2008,39(8): 38-40.
Yang Cai, Song Jian, Zhou Yan-xia. Algorithm for front wheel slip ratio in the traction control system when turning[J]. Transactions of the Chinese Society of Agricultural Machinery, 2008, 39(8): 38-40.
21 Bekker M G. Introduction to Terrain-vehicle Systems[M]. Michigan: The University of Michigan Press, 1969.
22 Karafiath L L, Nowatzki E A. Soil Mechanics for Off-road Vehicle Engineering[M]. Clausthal: Transportation Technology Publications, 1978.
23 杜小强, 宁晨, 杨振华, 等. 跨式油茶果收获机履带底盘行走液压系统设计与试验[J]. 农业机械学报, 2023, 54(3): 139-147.
Du Xiao-qiang, Ning Chen, Yang Zhen-hua, et al. Design and experiment of hydraulic system for crawler chassis of straddle type camellia oleifera fruit harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 139-147.
24 宋朋, 吕金庆. 基于EDEM-RecurDyn的自激式振动深松铲耦合仿真研究[J]. 东北农业大学学报,2023,54(2):87-94.
Song Peng, Lv Jin-qing. Effects of coupling simulation of self-excited vibratory subsoiler based on EDEM-RecurDyn[J]. Journal of Northeast Agricultural University, 2023, 54(2): 87-94.
25 刘汉光,王国强,孟东阁,等. 液压挖掘机履带行走装置的合理预张紧力[J]. 吉林大学学报:工学版,2018,48(2):486-491.
Liu Han-guang, Wang Guo-qiang, Meng Dong-ge, et al. Reasonable pre-tension reaserch of crawler traveling gear of hydraulic excavator[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 486-491.
[1] Peng-fei ZHOU,Xue-geng CHEN,He-wei MENG,Rong-qing LIANG,Bing-cheng ZHANG,Za KAN. Design and experiment of trommel with function of separating soil from residual film mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2718-2731.
[2] Mao-jian ZHANG,Jing-fu JIN,Yi-ying CHEN,Ting-kun CHEN. Vibration symmetry characteristics of wheeled tractor structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2136-2142.
[3] Guang-qiang ZHU,Tian-yu LI,Fu-jun ZHOU,Wen-ming WANG. Design and experiment of bionic ear picking device for fresh corn [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1231-1244.
[4] Guo-qiang DUN,Wen-hui LIU,Ning MAO,Xing-peng WU,Wen-yi JI,Hong-yan MA. Optimization design and experiment of alternate post changing seed metering device for soybean plot breeding [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 285-296.
[5] Shan ZENG,Deng-pan HUANG,Wen-wu YANG,Wei-jian LIU,Zhi-qiang WEN,Li ZENG. Design and test of the chassis of triangular crawler reclaiming rice harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1943-1950.
[6] Guo-liang WEI,Qing-song ZHANG,Biao WANG,Kun HE,Qing-xi LIAO. Analysis and experiment on parameters of plough body of rapeseed direct seeder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1709-1718.
[7] Yang LIU. Unloading impact simulation and test of luffing jib tower crane [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1292-1300.
[8] Jian-jun NIE,Xiu-peng YAN,Zong-zheng MA,Xiao-lin XIE,Jia-jie GUO,Ya-lei LYU. Design and trafficability analysis of new bow waist mobile chassis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 515-524.
[9] Jia-jie LIU,Lan MA,Wei XIANG,Bo YAN,Qing-hua WEN,Jiang-nan LYU. Design of 4QM⁃4.0 fibre crops green fodder combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 3039-3048.
[10] Bai-gong ZENG,Kui-liang LI,Jin YE,Li-li REN,Jaloliddin Rashidov,Ming ZHANG. Design and experiment of harvesting device for industrialized production line of Shanghaiqing [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2756-2764.
[11] Xing-yu WAN,Qing-xi LIAO,Ya-jun JIANG,Yi-yin SHAN,Yu ZHOU,Yi-tao LIAO. Discrete element simulation and experiment of mechanized harve- sting and chopping process for fodder rape crop harvest [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2735-2745.
[12] Guang-qiang ZHU,Tian-yu LI,Fu-jun ZHOU. Design and experiment of flexible clamping and conveying device for bionic ear picking of fresh corn [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2486-2500.
[13] Rong-qing LIANG,Bo ZHONG,He-wei MENG,Zhi-min SUN,Za KAN. Design of 4QJ⁃3 type pickup header of silage oat [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1887-1896.
[14] Xin-yan WANG,Quan JIANG,Feng LYU,Zheng-yang YI. Rollover stability of zero turning radius lawn mower based on parametric model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1908-1918.
[15] Jia-cheng YUAN,Chang WANG,Kun HE,Xing-yu WAN,Qing-xi LIAO. Effect of components mass ratio under sieve on cleaning system performance for rape combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1897-1907.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[2] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[3] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[4] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[5] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[6] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[7] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[8] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[10] Yu Hua-nan, Kang Jian . An improved blind multiuser detection scheme based on Kalman filter[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 122 -125 .