Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (10): 2849-2858.doi: 10.13229/j.cnki.jdxbgxb.20221538

Previous Articles    

Durability of AC-16 asphalt mixture under vibration molding design

Ying-jun JIANG1(),Hong-jian SU1,Ming-jie LI2,Yan HE3,Ya-wei BAI4,Peng-fei WANG5,Yu-hao BAO1,Min-feng CAI1   

  1. 1.Key Laboratory of Highway Engineering in Special Areas,Ministry of Education,Chang'an University,Xi'an 710064,China
    2.Transportation Infrastructure Quality Inspection Station of Henan Province,Zhengzhou 450005,China
    3.Xuchang City Highway Development Center,Xuchang 461670,China
    4.Jinhua Communications Investment Group Co. ,Ltd. ,Jinhua 321017,China
    5.China Communications Second Office Dongmeng Co. ,Ltd. ,Xi'an 710119,China
  • Received:2022-12-02 Online:2024-10-01 Published:2024-11-22

Abstract:

In order to demonstrate the durability of asphalt mixture designed by vertical vibration method (VTM) under the environment of light and repeated load, this paper firstly compares the mechanical properties of AC-16 mixture formed by VTM method, Marshall method and rotary compaction method (GTM). The anti-aging performance and fatigue resistance characteristics of VTM and Marshall design methods were deeply analyzed. The fatigue equation was established by Weibull distribution, and the fatigue life was compared. The results show that VTM forming specimens have the characteristics of high compactness, low porosity and ore gap ratio. The mechanical properties of GTM and VTM asphalt mixture are at least 35% higher than those of Marshall. GTM method, VTM method, Marshall method and field correlation were 94%, 92% and 72%, respectively. After aging, the low temperature performance of asphalt mixture designed by the two methods is similar. After short-term aging, the performance of VTM design asphalt mixture recovery asphalt changes more than Marshall's; After long-term aging VTM design asphalt mixture recovery asphalt performance changes less than Marshall; Weibull model presented good linear correlation. The fatigue resistance of asphalt mixture based on VTM design is better than Marshall method under different failure probabilities.

Key words: highway and railway engineering, asphalt mixture, vertical vibration method, marshall law, lasting quality

CLC Number: 

  • U416

Table 1

SBS (I-C) modified asphalt technical indicators"

技术指标针入度(25 ℃,5 s,100 g)/0.1 mm延度(5 cm/min,5 ℃)/cm软化点(环球法)/℃运动黏度(135 ℃)/(Pa·s)
规范要求60~80≥30≥55≤3.0
试验结果6636.870.52.138

Table 2

Fine aggregate technical indicators"

技术指标表观相对密度砂当量/%小于0.075 mm含量/%棱角性/s
规范要求≥2.5≥60≤12≥30
试验结果2.69580.37.243.4

Table 3

Coarse aggregate technical indicators"

技术指标压碎值/%洛杉矶磨耗值/%表观相对密度毛体积相对密度吸水率/%
规范要求≤20≤28≥2.6≤2.0
粒径/mm9.5~1614.719.22.8912.8630.34
4.75~9.52.8942.8560.46
2.36~4.752.9162.7701.81

Table 4

AC-16 asphalt mixture grading"

筛孔/mm191613.29.54.752.361.180.60.30.150.075
通过质量百分率/%10098.180.173.838.230.821.415.59.97.66.5

Table 5

VTE vibration parameters"

工作频率/Hz名义振幅/mm工作质量/kN
上车系统下车系统总质量
37±21.21.21.83.0

Table 6

AC-16 design standards for different methods of asphalt mixture"

设计方法试件尺寸(直径×高度)/mm体积指标力学指标GTM指标
VV/%VFA/%VMA/%MS/kNFL/mmτd/MPaσ/MPaGSIGSF
VTM100×63.52.6~4.068~80≥1≥12.51.5~4.0>1.25>4.0
Marshall101.6×63.53.0~5.065~75≥13≥81.5~4.0
GTM101.6×101.6≤1.05≥1.3

Table 7

Results of AC-16 asphalt mixture designed by different methods"

设计方法最佳油石比/%毛体积相对密度VV/%VMA/%VFA/%τd/MPaσ/MPaGSIGSF
VTM4.02.5762.811.775.71.4914.13
Marshall4.42.5304.113.669.8
GTM4.02.5862.511.478.31.031.46

Fig.1

Mechanical properties of asphalt mixture under different design methods"

Table 8

Low temperature bending test results of asphalt mixture designed by different methods after aging"

老化程度检测指标T单位TVTMTV/TM
原样RBMPa13.2711.311.173
εBμε×10-62 5492 7230.936
短期老化RBMPa13.4312.281.094
εBμε×10-62 4372 5160.969
长期老化RBMPa13.6012.311.105
εBμε×10-62 3322 4380.956

Table 9

Performance of asphalt recycled asphalt designed by different methods after aging"

检测

对象

检测指标T单位TVTMTV/ TM
原样25 ℃针入度0.1 mm66661.000
5 ℃延度cm36.836.81.000
软化点70.570.51.000
135 ℃黏度Pa·s2.1382.1381.000

短期

老化

25 ℃针入度0.1 mm37.738.90.969
5 ℃延度cm29.430.50.964
软化点87.585.01.029
135 ℃黏度Pa·s2.3372.3050.988

长期

老化

25 ℃针入度0.1 mm28.627.71.032
5 ℃延度cm21.220.01.060
软化点95.597.00.985
135 ℃黏度Pa·s2.4552.5050.980

Table 10

Trabecular bending test results"

方法PB/NRB/MPa
VTM1 1555.414
Marshall9784.585

Table 11

Fatigue test data of AC-16 asphalt mixture designed by different methods"

方法不同S对应的疲劳寿命N/次
S′=0.3S′=0.4S′=0.5S′=0.6S′=0.7
Marshall14 5323 8461 235598322
15 5114 1551 438677368
16 9034 5831 566784403
18 3154 8701 875838441
20 4785 1221 9231 024472
VTM20 3756 9822 7851 075534
22 0837 5292 9131 186590
23 7557 9383 2171 276604
25 3787 6413 3051 348674
26 0428 8653 5181 502705

Fig.2

Weibull fitting of fatigue data of asphalt mixture designed by different methods"

Table 12

Weibull distribution test results"

方法系数不同S对应N的Weibull分布模型回归系数
S′=0.3S′=0.4S′=0.5S′=0.6S′=0.7
Marshallα6.422 47.561 44.703 54.263 55.878 6
β63.02 764.04 935.11 828.62135.646
R20.961 20.988 70.967 80.966 50.998 5
VTMα8.721 68.932 29.169 36.945 07.881 0
β88.21 580.69074.27950.08951.111
R20.986 70.980 70.967 10.985 30.966 3

Table 13

Equivalent fatigue life under different failure probabilities"

方法

设计

失效概率P/%不同S对应的等效疲劳寿命Nˉ
S′=0.3S′=0.4S′=0.5S′=0.6S′=0.7
Marshall511 5123 222930410259
1012 8773 5441 083486293
2014 4733 9131 271579333
3015 5704 1641 404646361
4016 4664 3661 516703384
5017 2674 5461 617755404
VTM517 5716 0092 385884450
1019 0826 5142 580981493
2020 7977 0852 8001 093542
3021 9467 4672 9471 169575
4022 8697 7733 0641 231602
5023 6838 0433 1681 286626

Fig.3

VTM and Marshall fatigue equation at P=50%"

Table 14

Regression coefficient of fatigue equation"

设计方法系数不同失效概率P疲劳方程回归系数和相关系数
5%10%20%30%40%50%
Marshalla3.7653.9324.1044.2134.2964.365
b4.6234.5734.5234.4914.4664.447
R20.9940.9960.9970.9980.9990.999
VTMa4.6124.7144.8184.8844.9344.977
b4.3694.3514.3324.3204.3114.303
R20.9950.9940.9960.9960.9960.997
1 王聪,郭乃胜,赵颖华,等.不同成型方法和级配的沥青混合料内部空隙特征[J].吉林大学学报:工学版,2014,44(1):74-80.
Wang Cong, Guo Nai-Sheng, Zhao Ying-hua, et al. Air voids distribution of asphalt mixtures in different compaction methods and aggregate gradations[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(1): 74-80.
2 季节,高超.基于不同成型方式的热再生沥青混合料性能试验研究[J].公路,2014,59(3):174-177.
Ji Jie, Gao Chao. Experimental study on properties of hot reclaimed asphalt mixture based on different forming methods[J]. Highway, 2014,59(3):174-177.
3 易勇,蒋应军,谭云鹏,等.不同成型方式乳化沥青冷再生混合料力学特性研究[J].重庆大学学报,2021,44(5):50-58.
Yi Yong, Jiang Ying-jun, Tan Yun-peng, et al. Mechanical properties of emulsified asphalt cold recycling mixture with different forming methods[J]. Journal of Chongqing University, 2021, 44(5):50-58.
4 李正中,魏如喜,宋晓燕,等.基于GTM法的温拌胶粉改性沥青混合料设计研究[J].建筑材料学报,2013,16(6):968-974.
Li Zheng-zhong, Wei Ru-xi, Song Xiao-yan, et al. Design and research on the warm-mix rubber-modified asphalt mixture based on the GTM method[J]. Journal of Building Materials, 2013, 16(6):968-974.
5 Han D, Wei L, Zhang J. Experimental study on performance of asphalt mixture designed by different method[J]. Procedia Engineering, 2016, 137:407-414.
6 任天琦,张海涛,张雪芹,等.不同成型方法对沥青混合料路用性能和细观结构的影响[J].森林工程,2022,38(4):172-180.
Ren Tian-qi, Zhang Hai-tao, Zhang Xue-qin, et al. Influence of different forming methods on road performance and meso-structure of asphalt mixture[J]. Forest Engineering, 2022, 38(4):172-180.
7 周杰,王曦林,郑存艳,等.沥青混合料Superpave与马歇尔设计方法的比较[J].武汉理工大学学报,2007,174(9):68-70.
Zhou Jie, Wang Xi-lin, Zheng Cun-yan, et al. Comparison of superpave and marshall methodology on asphalt mixture design[J]. Journal of Wuhan University of Technology, 2007, 174(9):68-70.
8 李鹏飞,张海涛,马盛盛,等.不同成型方法对沥青混合料回弹模量的影响[J].科学技术与工程,2019,19(32):322-325.
Li Peng-fei, Zhang Hai-tao, Ma Sheng-sheng, et al. Influence of forming method on resilient modulus of asphalt mixture[J]. Science Technology and Engineering, 2019, 19(32):322-325.
9 Jiang Y J, Fan L F. An experimental investigation of optimal asphalt-aggregate ratio for different compaction methods[J]. Construction and Building Materials, 2015, 91: 111-115.
10 蒋应军,韩占闯,胡永林.冷再生混合料垂直振动成型法设计与评价[J].南京理工大学学报,2019,43(2):186-192.
Jiang Ying-jun, Han Zhan-chuang, Hu Yong-lin. Design and evaluation of cold recycled mixture by vertical vibration forming method[J]. Journal of Nanjing University of Science and Technology, 2019, 43(2):186-192.
11 李志刚,郝培文,曾志武.泡沫沥青冷再生混合料成型方法[J].复合材料学报,2017,34(9):2038-2046.
Li Zhi-gang, Hao Pei-wen, Zeng Zhi-wu. Research on the compaction methods of cold recycled mixture using foamed asphalt[J]. Journal of Composite Materials, 2017, 34(9):2038-2046.
12 解晓光,马松林,王哲人.沥青混合料马歇尔击实法与振动压实法成型工艺的比较研究[J].中国公路学报,2001(1):11-14.
Xie Xiao-guang, Ma Song-lin, Wang Zhe-ren. Study of compacting properties of asphalt mixture with Marshall and vibratory compaction method[J]. China Journal of Highway and Transport, 2001(1):11-14.
13 沙爱民,王玲娟,耿超.大粒径碎石沥青混合料振动压实方法[J].长安大学学报:自然科学版,2008,123(2):1-4.
Sha Ai-min, Wang Ling-juan, Geng Chao. Vibrating compaction method of large stone asphalt mixture[J]. Journal of Chang'an University(Natural Science Edition), 2008, 123(2):1-4.
14 王天林,蒋应军.沥青混合料试件振动成型方法[J].武汉理工大学学报:交通科学与工程版,2014,38(3):558-561.
Wang Tian-lin, Jiang Ying-jun. Vibration forming method of asphalt mixture specimen[J]. Journal of Wuhan University of Technology(Transportation Science and Engineering), 2014, 38(3):558-561.
15 张毅,薛金顺,陈浙江,等.成型方法对ATB-30混合料性能的影响[J].公路交通科技,2014,31(10):1-6.
Zhang Yi, Xue Jin-shun, Chen Zhe-jiang, et al. Effect of compaction methods on performance of ATB-30 asphalt mixture[J]. Journal of Highway and Transportation Science and Technology, 2014, 31(10):1-6.
16 蒋应军,李湾湾,方剑,等.振动压实二灰碎石力学特性及影响因素[J].长安大学学报:自然科学版,2017,37(1):1-9.
Jiang Ying-jun, Li Wan-wan, Fang Jian, et al. Mechanical properties and influencing factors of lime-fly-ash crushed rock base on vertical vibration test method[J]. Journal of Chang 'an University(Natural Science Edition), 2017, 37(1):1-9.
17 魏海斌,王相焱,王富玉,等.基于振动成型AC-25沥青混合料力学性能及细观分析[J].吉林大学学报:工学版,2021,51(4):1269-1276.
Wei Hai-bin, Wang Xiang-yan, Wang Fu-yu, et al. Mechanical properties and micro analysis of AC-25 asphalt mixture based on vibration forming[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4):1269-1276.
18 洪亮,刘涛,杨三强.水泥稳定砾石骨料振动与击实成型对比试验[J].重庆交通大学学报:自然科学版,2014,33(6):63-67.
Hong Liang, Liu Tao, Yang San-qiang. Comparative experiment on vibrating compaction and modified proctor compaction of silt cement-stabilized gravel aggregate[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2014, 33(6):63-67.
19 Li P L, Ding Z, Zhang Z Q. Analysis of performance decay behavior for asphalt pavement based on aging[J]. Advanced Materials Research, 2013, 723:22-26.
20 贾晓东,梁乃兴,赵毅,等.水-温-荷载耦合作用下沥青路面疲劳寿命预估[J].公路,2019,64(11):192-198.
Jia Xiao-dong, Liang Nai-xing, Zhao Yi, et al. Prediction on fatigue life of asphalt pavement under water-temperature-load coupling[J]. Highway, 2019, 64(11): 192-198.
21 张喜军,仝配配,蔺习雄,等.基于线性振幅扫描试验评价硬质沥青的疲劳性能[J].材料导报,2021,35(18):18083-18089.
Zhang Xi-jun, Tong Pei-pei, Lin Xi-xiong, et al. Fatigue characterization of hard petroleum asphalt based on the linear amplitude sweep test[J]. Materials Review, 2021, 35(18):18083-18089.
22 周亮,凌建明,林小平.考虑环境因素的沥青路面疲劳开裂预估模型[J].中国公路学报,2013,26(6):47-52.
Zhou Liang, Ling Jian-ming, Lin Xiao-ping. Prediction model for fatigue crack of asphalt pavement with environment factors considered[J]. China Journal of Highway and Transport, 2013, 26(6):47-52.
23 杨军,王昊鹏,廖辉.沥青混合料疲劳自愈性能关键影响因素[J].东南大学学报:自然科学版,2016,46(1):196-201.
Yang Jun, Wang Hao-peng, Liao Hui. Key influential factors of fatigue and self-healing properties of asphalt mixture[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(1):196-201.
24 崔亚楠,郭靖,冯蕾,等.复杂环境因素影响下沥青混合料自愈合性能[J].建筑材料学报,2018,21(5):836-840.
Cui Ya-nan, Guo Jing, Feng Lei,et al. Self-healing properties of asphalt mixture under different factors[J]. Journal of Building Materials, 2018, 21(5):836-840.
25 彭勇,章秀芳,郭泽宇,等.离散元法分析集料接触特性对沥青混合料剪切疲劳寿命的影响[J].吉林大学学报:工学版,2023,53(1):178-187.
Peng Yong, Zhang Xiu-fang, Guo Ze-yu, et al. Influence of aggregate contact characteristics on shear fatigue life of asphalt mixtures using discrete element method[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1):178-187.
26 张银生,马庆伟,蒋应军,等.成型方法对SMA-13沥青混合料技术性能的影响[J].公路,2022,67(7):380-387.
Zhang Yin-sheng, Ma Qing-wei, Jiang Ying-jun,et al. Effect of forming method on technical performance of SMA-13 asphalt mixture[J]. Highway, 2022, 67(7):380-387.
27 孙立军. 沥青路面结构行为理论[M].北京:人民交通出版社,2005.
28 毕玉峰,孙立军. 沥青混合料抗剪试验方法研究[J]. 同济大学学报:自然科学版,2005,33(8):1036-1040.
Bi Yu-feng, Sun Li-jun. Research on test method of asphalt mixture's shearing properties[J]. Journal of Tongji University(Natural Science), 2005, 33(8): 1036-1040.
29 Ayatollahi M R, Aliha M R M. Fracture parameters for cracked semi-circular specimen[J].International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3): 1-5.
30 曹轲铭. 沥青混合料半圆弯拉试验方法研究[D]. 长沙: 湖南大学土木工程学院, 2007.
Cao Ke-ming. Research on semi-circular bending test for asphalt mixtures[D]. Changsha: College of Civil Engineering, Hunan University, 2007.
31 邹桂莲,秦欢,吴欣.阿布森回收SBS改性沥青的试验研究[J].中外公路,2020,40(2):229-233.
Zou Gui-lian, Qin Huan, Wu Xin. Experimental study on recovery of SBS modified asphalt based on abson method[J]. Journal of China and Foreign Highway, 2020, 40(2):229-233.
[1] Rong LUO,Yu LIANG,Long-chang NIU,Ting-ting HUANG,Qiang MIAO. Threshold value of water stability evaluation index of asphalt mixture under multi-temperature conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1966-1977.
[2] Zu-zhong LI,Meng-yuan LI,Wei-dong LIU,Xiao-xiao PANG,Hao Tang,Xue-lei ZHANG,Chen-yang MA. Surface modification of bagasse fibers and road performances of asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1738-1745.
[3] Ya-zhen SUN,Bo-xin XUE,Yan SUN,Zhi-chen WANG,Jia-wei PAN. Mesoscale simulation of cracking behavior of asphalt mixture considering heterogeneity [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1708-1718.
[4] Yang ZHANG,Ao-peng WANG,Jing-lin ZHANG,Tao MA,Si-yu CHEN. Dry shrinkage in cement⁃stabilized macadam: a review [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 297-311.
[5] Nie-yang-zi LIU,Xin RONG,Hong-hai LIU,Qing-hua BIAN,Hai LAN. Mixing power test and viscosity model of asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 220-225.
[6] Yong PENG,Xiu-fang ZHANG,Ze-yu GUO,Xue-yuan LU,Yan-wei LI. Influence of aggregate contact characteristics on shear fatigue life of asphalt mixtures using discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 178-187.
[7] Yu-quan YAO,Jian-gang YANG,Jie GAO,Liang SONG. Optimal design on recycled hot⁃mix asphalt mixture based on performance⁃cost model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 585-595.
[8] Wei-zhi DONG,Shuang ZHANG,Fu ZHU. Evaluation of pavement performance of asphalt mixture based on extension analytic hierarchy process [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2137-2143.
[9] Hai-bin WEI,Xiang-yan WANG,Fu-yu WANG,Yong ZHANG. Mechanical properties and micro analysis of AC-25 asphalt mixture based on vibration forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1269-1276.
[10] Yong-chun CHENG,He LI,Li-ding LI,Hai-tao WANG,Yun-shuo BAI,Chao CHAI. Analysis of mechanical properties of asphalt mixture affected by aggregate based on grey relational degree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 925-935.
[11] Yong PENG,Han-duo YANG,Xue-yuan LU,Yan-wei LI. Effect of void characteristics on virtual shear fatigue life of asphalt mixtures using discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 956-964.
[12] Yang LI,Lian-jun WANG. Applicability analysis of two dimensional modelingmethods for wide embankment composite foundation in high speed railway stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 621-630.
[13] Ying WANG,Ping LI,Teng-fei NIAN,Ji-bin JIANG. Short-term water damage characteristics of asphalt mixture based on dynamic water scour effect [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 174-182.
[14] Chun-feng ZHU,Yong-chun CHENG,Chun-yu LIANG,Bo XIAO. Road performance experiment of diatomite⁃basalt fiber composite modified asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 165-173.
[15] Yong PENG,Hua GAO,Lei WAN,Gui-ying LIU. Numerical simulation of influence factors of splitting strength of asphalt mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1521-1530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!