Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1474-1482.doi: 10.13229/j.cnki.jdxbgxb.20230636

Previous Articles    

Energy absorption characteristics of bionic helical structures inspired by mantis shrimp

Ying-chun QI(),Zhao-hui ZHANG,Li-xin CHEN,Qing-yang WANG,Xue GUO,Zheng-lei YU(),Zhi-hui ZHANG   

  1. Key Laboratory of Bionic Engineering,Ministry of Education,Jilin University,Changchun 130022,China
  • Received:2023-06-21 Online:2025-04-01 Published:2025-06-19
  • Contact: Zheng-lei YU E-mail:qiyc@jlu.edu.cn;zlyu@jlu.edu.cn

Abstract:

Inspired by the microscopic Bouligand structure of mantis shrimp, this paper used four cells (hexagonal, circular, quadrilateral and negative Poisson's ratio) as interlayer basic structures, and established four bionic helical structures and four contrast structures. Using the thermoplastic polyurethane material as the base material, the above structures were fabricated by 3D printing technology. Based on the quasi-static compression tests and numerical simulations, the energy absorption performance of the above eight structures was investigated. The results showed that the energy absorption characteristics of the four bionic helical structures were better, and the specific energy absorption of the bionic hexagon helical structure could reach 531.65 mJ/g. Compared with the corresponding contrast structure, the specific energy absorption of the four bionic helical structures increased by 64.72%, 32.39%, 55.84% and 25.14% respectively, which indicated that the helical stacking distribution between layers effectively increased the energy absorption characteristics of the structures. The deformation and failure of the structures would absorb more energy.

Key words: engineering bionics, mantis shrimp, bioinspried helical structures, 3D printing, quasi-static compression, energy absorption characteristics

CLC Number: 

  • TB17

Fig.1

Bio-inspired bouligand structure"

Fig.2

Bionic bouligand structure and its contrast structure"

Fig.3

Tensile test curve and tensile test setting"

Fig.4

Finite element model and grid-independent analysis"

Fig.5

Force displacement curves of tests and simulations"

Fig.6

Energy absorption and specific energy absorption of tests and simulations"

Fig.7

Biomimetic bouligand structure deformation model"

Fig.8

Multi-angle force displacement curves of simulations"

Fig.9

Multi-angle structure specific energy absorption"

[1] Tan H L, He Z C, Li K X, et al. In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson's ratio[J]. Composite Structures, 2019, 229: No.111415.
[2] 于征磊, 信仁龙, 陈立新, 等. 仿蜂窝防护结构的承载特性[J]. 吉林大学学报: 工学版, 2021, 51(3): 1140-1145.
Yu Zheng-lei, Xin Ren-long, Chen Li-xin, et al. Load bearing characteristics of honeycomb protection structure[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3): 1140-1145.
[3] Yang X F, Sun Y X, Yang J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure[J]. Thin-Walled Structures, 2018, 125: 1-11.
[4] Liang H Y, Hao W Q, Xue G L, et al. Parametric design strategy of a novel self-similar hierarchical honeycomb for multi-stage energy absorption demand[J]. International Journal of Mechanical Sciences, 2022, 217:No. 107029.
[5] Zhang Y, Wang J, Wang C H, et al. Crashworthiness of bionic fractal hierarchical structures[J]. Materials & Design, 2018, 158: 147-159.
[6] Zhang W, Yu T X, Xu J. Uncover the underlying mechanisms of topology and structural hierarchy in energy absorption performances of bamboo-inspired tubular honeycomb[J]. Extreme Mechanics Letters, 2022, 52: No.101640.
[7] Yang W, Chen Irene H, Bernd G, et al. Natural flexible dermal armor[J]. Advanced Materials, 2013, 25(1): 31-48.
[8] Quan H C, Yang W, Eric S, et al. Novel defense mechanisms in the armor of the scales of the "living fossil" coelacanth fish[J]. Advanced Functional Materials, 2018, 28(46): No.1804237.
[9] 韩铖. 仿生轻质抗冲击结构材料的设计、制备与性能研究[D]. 南京: 南京航空航天大学机电学院,2018.
Han Cheng. Research on bio-inspired lightweight anti-impact structure and its mechanical analysis[D]. Nanjing:College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 2018.
[10] Meng Q H, Gao Y, Shi X H, et al. Three-dimensional crack bridging model of biological materials with twisted Bouligand structures[J]. Journal of the Mechanics and Physics of Solids, 2022, 159:No.104729.
[11] Lian J, Wang J. Microstructure and mechanical anisotropy of crab cancer magister exoskeletons[J]. Experimental Mechanics, 2014, 54(2): 229-239.
[12] Ma C L, Gu D D, Lin K J, et al. Selective laser melting additive manufacturing of cancer pagurus's claw inspired bionic structures with high strength and toughness[J]. Applied Surface Science, 2019, 469: 647-656.
[13] Kellersztein I, Cohen S R, Bar-On B, et al. The exoskeleton of scorpions' pincers: structure and micro-mechanical properties[J]. Acta Biomaterialia, 2019, 94: 565-573.
[14] Israel G, Israel K, Daniel W H. Nested helicoids in biological microstructures[J]. Nature Communications, 2020, 11(1):No.224.
[15] Yang R G, Zaheri A, Gao W, et al. AFM identification of beetle exocuticle: bouligand structure and nanofiber anisotropic elastic properties[J]. Advanced Functional Materials, 2017, 27(6): No.1603993.
[16] Lee N, Berthelson P R, Nguyen V, et al. Microstructure and nanomechanical properties of the exoskeleton of an ironclad beetle[J]. Bioinspiration & Biomimetics, 2021, 16(3): No.036005.
[17] Zimmermann E A, Gludovatz B, Schaible E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour[J]. Nature Communications, 2013, 4: No.2634.
[18] Chen S M, Wu K J, Gao H L, et al. Biomimetic discontinuous Bouligand structural design enables high-performance nanocomposites[J]. Matter, 2022, 5(5): 1563-1577.
[19] Zhang X Y, Luan Y B, Li Y C, et al. Bioinspired design of lightweight laminated structural materials and the intralayer/interlayer strengthening and toughening mechanisms induced by the helical structure[J]. Composite Structures, 2021, 276:No. 114575.
[20] Yang F, Xie W H, Meng S H. Crack-driving force and toughening mechanism in crustacean-inspired helicoidal structures[J]. International Journal of Solids and Structures, 2021, 208: 107-118.
[21] Cheng L, Thomas A, Glancey James L, et al. Mechanical behavior of bio-inspired laminated composites[J]. Composites Part A-Applied Science and Manufacturing, 2011, 42(2): 211-220.
[22] 韩奇钢, 石绍迁, 徐凯强,等. 仿螳螂虾鳌结构/功能的玄武岩纤维增强复合材料碟簧研究[J]. 塑性工程学报, 2020, 10(27): 77-82.
Han Qi-gang, Shi Shao-qian, Xu Kai-qiang, et al. Study on basalt fiber reinforced composite disc spring of bionic structure/function of dactyl club of mantis shrimp[J]. Journal of Plasticity Engineering, 2020, 10(27): 77-82.
[1] Peng XI,Qian CONG,Shao-bo YE,Hong-bo LI,Yan-qing ZHANG. Bionic design and adsorption performance analysis of vacuum sucker [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 382-391.
[2] Xin YANG,Yang WANG,Jia-feng SONG,Yong ZHU,Bin-bing HUANG,Shu-cai XU. Design and numerical simulation of bionic sandwich panel based on a shrimp chela structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 842-851.
[3] Zheng-lei YU,Qing CAO,Jun-dong ZAHNG,Peng-wei SHA,Jing-fu JIN,Wan-zhen WEI,Ping LIANG,Zhi-hui ZHANG. Mechanical properties of a bionic buffer structure of a lander based on additive manufacturing [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 3077-3084.
[4] Wei-min ZHUANG,En-ming WANG. Modeling and compression simulation of 3D solid aluminum foam with random cell wall thickness [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1777-1785.
[5] Han HUANG,Qing-hao YAN,Zhi-xin XIANG,Xin-tao YANG,Jin-bao CHEN,Shu-cai XU. Crashworthiness investigation and optimization of bionic multi⁃cell tube based on shrimp chela [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 716-724.
[6] Zheng-lei YU,Li-xin CHEN,Ze-zhou XU,Ren-long XIN,Long MA,Jing-fu JIN,Zhi-hui ZHANG,Shan JIANG. Analysis of mechanical characteristics and recovery characteristics of bionic protective structures based on additive manufacturing [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1540-1547.
[7] Zheng-lei YU,Ren-long XIN,Li-xin CHEN,Yi-ning ZHU,Zhi-hui ZHANG,Qing CAO,Jing-fu JIN,Jie-liang ZHAO. Load bearing characteristics of honeycomb protection structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1140-1145.
[8] Chun-bao LIU,Shan-shi CHEN,Chuang SHENG,Zhi-hui QIAN,Lu-quan REN,Lei REN. Bionic hydraulic driving mechanism of spider and its bioinspiration [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 375-381.
[9] Xing-tian QU,Xue-xu WANG,Hui-chao SUN,Kun ZHANG,Long-wei YAN,Hong-yi WANG. Fuzzy self⁃adaptive PID control for fused deposition modeling 3D printer heating system [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 77-83.
[10] Dong⁃liang CHEN,Rui ZANG,Peng DUAN,Wei⁃peng ZHAO,Xu⁃tao WENG,Yang SUN,Yi⁃peng TANG. Biomimetic design of multi⁃link fishbone based on crescent′s fishtail propulsion theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1246-1257.
[11] Na WU,Jian ZHUANG,Ke⁃song ZHANG,Hui⁃xin WANG,Yun⁃hai MA. Compression mechanical properties and fracture mechanism of Scapharca Subcrenata shell [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 897-902.
[12] GUO Hao-tian,XU Tao,LIANG Xiao,YU Zheng-lei,LIU Huan,MA Long. Optimization on thermal surface with rib turbulator inspired by turbulence of alopias' gill in simplified gas turbine transition piece [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1793-1798.
[13] XI Peng,CONG Qian,WANG Qing-bo,GUO Hua-xi. Wear test and anti-friction mechanism analysis of bionic stripe grinding roll [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1787-1792.
[14] QIAN Zhi-hui, ZHOU Liang, REN Lei, REN Lu-quan. Completely passive walking machine with bionic subtalar joint and matatarsal phalangeal joint [J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[15] QU Xing-tian, YAN Long-wei, SUN Hui-chao, ZHOU Wei, LI Guang-hui. Structure analysis of 3D printer device of reversible working platform [J]. 吉林大学学报(工学版), 2017, 47(5): 1489-1497.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .