Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 382-391.doi: 10.13229/j.cnki.jdxbgxb.20230200

Previous Articles    

Bionic design and adsorption performance analysis of vacuum sucker

Peng XI1(),Qian CONG2(),Shao-bo YE1,Hong-bo LI1,Yan-qing ZHANG1   

  1. 1.College of Agricultural Engineering,Shanxi Agricultural University,Jinzhong 032699,China
    2.College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China
  • Received:2023-03-07 Online:2025-01-01 Published:2025-03-28
  • Contact: Qian CONG E-mail:13029127775@163.com;yydljxp2000@126.com

Abstract:

The adsorption performance of bionic sucker based on the excellent adsorption of abalone abdominal foot was studied from the perspective of bionics. The surface morphology of the abdominal foot was extracted to design the bionic sucker, and the adsorption of the sucker was simulated and analyzed. The bionic sucker with good adsorption was selected for tensile test, and the adsorption mechanism was explored according to the experimental results. The width of the sealing ring has a great effect on the Mises stress of the bionic sucker, while the distance between the groove and the center of the sucker and the number of grooves distribution have little effect. The stress on the sucker bottom with a sealing ring width of 1.5 mm is greater than that of the bionic sucker with a width of 3 mm. The bionic sucker with the width of sealing ring of 1.5 mm, the distance between groove and center of sucker of 20 mm, and the number of grooves distributed is 12 has the largest adsorption force under 40% vacuum degree, and its maximum adsorption force is 5.32% higher than that of standard sucker. The bionic sucker can improve the adsorption performance of the sucker. The bionic sucker sealing ring structure can effectively prevent the edge of the sucker from shrinking inward and the groove structure can delay the connection between the inner cavity of the sucker and the outside, which is the key to improving the adsorption performance of the sucker.

Key words: engineering bionics, sucker, abalone, sealing ring, stripe groove, adsorption

CLC Number: 

  • TB17

Fig.1

Structural parameters of standard sucker"

Fig.2

3D model of the standard sucker (part sectioned view)"

Fig.3

Annular mounds and striped grooves of abalone abdominal foot"

Table 1

Dimension parameter design based on bionic sucker characteristics"

仿生吸盘

编号

第一特征

密封环宽度/mm

第二特征
沟槽距吸盘 中心距离/mm沟槽 分布数量
11.51224
21.51220
31.51215
41.51212
51.52024
61.52020
71.52015
81.52012
931224
1031220
1131215
1231212
1332024
1432020
1532015
1632012
标准吸盘000

Fig.4

Comparison of three-dimensional models of different types of bionic suckers"

Fig.5

Five areas for measuring the Mises stress of sucker"

Table 2

Mises stress of suckers in different regions"

吸盘类别区域
12345
仿生1号87 40341 14145 474258 36028 847
仿生2号85 27653 01770 338259 77031 627
仿生3号86 41233 74849 430263 64033 502
仿生4号91 85940 64649 804259 45027 217
仿生5号89 24640 17430 462293 41026 033
仿生6号97 16044 44163 827281 63023 956
仿生7号94 94643 52434 078286 28027 885
仿生8号93 38839 55253 890289 34026 849
仿生9号82 32735 38754 487231 04028 748
仿生10号84 82235 21062 196213 63032 504
仿生11号92 75831 61277 550205 75040 407
仿生12号91 47034 73259 046221 75029 323
仿生13号86 83134 46859 992222 95010 439
仿生14号97 37537 32952 451208 70038 393
仿生15号97 53247 71447 961215 89047 215
仿生16号94 07542 59456 051214 23037 651
标准吸盘35 20038 80045 70053 00057 200

Fig.6

Mises stress curves of bionic suckers with different number of grooves"

Fig.7

Mises stress of bionic suckers at area 1 and area 4"

Fig.8

Mises stress curves of bionic suckers with different distances from groove to sucker center"

Fig.9

Mises stress curves of bionic suckers with different sealing ring widths"

Fig.10

Comparison of standard sucker and No.5~8 bionic sucker samples"

Fig.11

Vacuum sucker adsorption test bench"

Table 3

Adsorption force of standard and bionic"

吸盘类别

实验次数

标准

吸盘

仿生

5号

仿生

6号

仿生

7号

仿生

8号

141.8541.5638.5243.7543.84
242.6142.9938.6242.5145.46
342.4242.5137.141.1845.17
441.6643.0841.2841.5643
541.8542.4240.9943.8444.13
平均值42.07842.51239.342.56844.32
百分比/%10010193.4101105

Fig.12

Whole deformation process of sucker bottom surface in adsorption test"

1 白联强,宋仲康,王鹏.不同泄漏情况下真空吸盘内部流场仿真分析[J].机械工程师, 2018(7): 33-35, 38.
Bai Lian-qiang, Song Zhong-kang, Wang Peng. Simulation Analysis on Internal Flow Field of a Vacuum Suction Cup under Different Leakage Conditions[J]. Mechanical Engineer, 2018(7): 33-35, 38.
2 秦建华,邓晨韵,王敦球,等.基于有限元的不同布局方式对真空吸附装置的影响[J].桂林理工大学学报, 2017, 37(4): 713-717.
Qin Jian-hua, Deng Chen-yun, Wang Dun-qiu, et al. Influence analysis of different layout methods on the vacuum adsorption device based on ANSYS method[J]. Journal of Guilin University of Technology, 2017, 37(4): 713-717.
3 聂俊峰,王涛,许英南,等.柔性吸盘真空吸附性能试验[J].液压与气动,2020(5): 131-137.
Nie Jun-feng, Wang Tao, Xu Ying-nan, et al. Vacuum Adsorption Test of Flexible Suction Cup[J]. Chinese Hydraulics&Pneumatics, 2020(5): 131-137.
4 施迈茨.施迈茨——用于包装行业的新型波纹吸盘SPB 4f[EB/OL]. [2023-06-25]. .
5 AIRBEST.SOP系列圆形海绵吸盘[EB/OL]. [2023-06-25]. .
6 Peng X Y, Ma C D, Ji J X, et al. Underwater adhesion mechanisms and biomimetic study of marine life[J]. Tribology, 2020, 40(6): 816-830.
7 Maie T, Blob R W. Adhesive force and endurance of the pelvic sucker across different modes of waterfall-climbing in gobiid fishes: contrasting climbing mechanisms share aspects of ontogenetic change[J]. Zoology, 2021, 149:No. 125969.
8 Palecek A M, Schoenfuss H L, Blob R W. Sucker shapes, skeletons, and bioinspiration: how hard and soft tissue morphology generates adhesive performance in waterfall climbing goby fishes[J]. Integrative And Comparative Biology, 2022, 62(4):No.094.
9 Wang S H, Luo H Y, Linghu C H, et al. Elastic energy storage enabled magnetically actuated, octopus‐inspired smart adhesive[J]. Advanced Functional Materials, 2021, 31(9): No.2009217.
10 Baik S, Hwang G W, Jang S, et al. Bioinspired microsphere-embedded adhesive architectures for an electrothermally actuating transport device of dry/wet pliable surfaces[J]. ACS Applied Materials And Interfaces, 2021, 13(5): 6930-6940.
11 Huie J M, Summers A P. The effects of soft and rough substrates on suction-based adhesion[J]. The Journal of Experimental Biology, 2022, 225(9): No.243773.
12 Kazuma T, Yasutaka M, Masatsugu S, et al. A New Concept for an Adhesive Material Inspired by Clingfish Sucker Nanofilaments[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2022, 38(3): 1215-1222.
13 丛茜,徐金,史孝杰,等.仿生凹坑型吸盘设计与试验[J].吉林大学学报:工学版: 2024,54(4):1144-1152.
Cong Qian, Xu Jin, Shi Xiao-jie, et al. Bionic pit design and experiment of the sucker[J]. Journal of Jilin University(Engineering and Technology Edition), 2024,54(4):1144-1152.
14 Popov V L, Filippov A E, Gorb S N. Biological microstructures with high adhesion and friction: numerical approach[J]. Physics-Uspekhi, 2016, 59(9): 829-845.
15 Ditsche P, Wainwright D K, Summers A P. Attachment to challenging substrates-fouling, roughness and limits of adhesion in the northern clingfish(Gobiesox maeandricus)[J]. Journal of Experimental Biology, 2014, 217(14): 2548-2554.
16 Ditsche P, Summers A P. Learning from Northern clingfish (Gobiesox maeandricus): bioinspired suction cups attach to rough surfaces[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374(1784): No.20190204.
17 Chuang Y C, Chang H K, Liu G L, et al. Climbing upstream: Multi-scale structural characterization and underwater adhesion of the Pulin river loach (Sinogastromyzon puliensis)[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 73:76-85.
18 Zhang Y, Li S, Zuo P, et al. Adhesion behaviors of abalone under the action of water flow[J]. Frontiers in Mechanical Engineering, 2021(7): No.659468.
19 Zhang Y, Li S, Zuo P, et al. A mechanics study on the self-righting of abalone from the substrate[J]. Applied Bionics and Biomechanics, 2020(1): No.8825451.
20 Li J, Ma C, Liu J, et al. The co-effect of microstructures and mucus on the adhesion of abalone from a mechanical perspective[J]. Biosurface and Biotribology, 2021, 7(4): 180-186.
21 Lin A Y M, Brunner R, Chen P Y, et al. Underwater adhesion of abalone: the role of van der Waals and capillary forces[J]. Acta Materialia, 2009, 57(14): 4178-4185.
22 Li J, Zhang Y, Liu S, et al. Insights into adhesion of abalone: a mechanical approach[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, (77): 331-336.
[1] Qian CONG,Jin XU,Xiao-jie SHI,Jing-fu JIN,Ting-kun CHEN. Bionic pit design and experiment of the sucker [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1144-1152.
[2] Xin YANG,Yang WANG,Jia-feng SONG,Yong ZHU,Bin-bing HUANG,Shu-cai XU. Design and numerical simulation of bionic sandwich panel based on a shrimp chela structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 842-851.
[3] Zheng-lei YU,Qing CAO,Jun-dong ZAHNG,Peng-wei SHA,Jing-fu JIN,Wan-zhen WEI,Ping LIANG,Zhi-hui ZHANG. Mechanical properties of a bionic buffer structure of a lander based on additive manufacturing [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 3077-3084.
[4] Han HUANG,Qing-hao YAN,Zhi-xin XIANG,Xin-tao YANG,Jin-bao CHEN,Shu-cai XU. Crashworthiness investigation and optimization of bionic multi⁃cell tube based on shrimp chela [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 716-724.
[5] Zheng-lei YU,Li-xin CHEN,Ze-zhou XU,Ren-long XIN,Long MA,Jing-fu JIN,Zhi-hui ZHANG,Shan JIANG. Analysis of mechanical characteristics and recovery characteristics of bionic protective structures based on additive manufacturing [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1540-1547.
[6] Zheng-lei YU,Ren-long XIN,Li-xin CHEN,Yi-ning ZHU,Zhi-hui ZHANG,Qing CAO,Jing-fu JIN,Jie-liang ZHAO. Load bearing characteristics of honeycomb protection structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1140-1145.
[7] Chun-bao LIU,Shan-shi CHEN,Chuang SHENG,Zhi-hui QIAN,Lu-quan REN,Lei REN. Bionic hydraulic driving mechanism of spider and its bioinspiration [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 375-381.
[8] Dong⁃liang CHEN,Rui ZANG,Peng DUAN,Wei⁃peng ZHAO,Xu⁃tao WENG,Yang SUN,Yi⁃peng TANG. Biomimetic design of multi⁃link fishbone based on crescent′s fishtail propulsion theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1246-1257.
[9] Na WU,Jian ZHUANG,Ke⁃song ZHANG,Hui⁃xin WANG,Yun⁃hai MA. Compression mechanical properties and fracture mechanism of Scapharca Subcrenata shell [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 897-902.
[10] GUO Hao-tian,XU Tao,LIANG Xiao,YU Zheng-lei,LIU Huan,MA Long. Optimization on thermal surface with rib turbulator inspired by turbulence of alopias' gill in simplified gas turbine transition piece [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1793-1798.
[11] XI Peng,CONG Qian,WANG Qing-bo,GUO Hua-xi. Wear test and anti-friction mechanism analysis of bionic stripe grinding roll [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1787-1792.
[12] SUN Xiu-rong, DONG Shi-min, WANG Hong-bo, LI Wei-cheng, SUN Liang. Comparison of multistage simulation models of entire sucker rod with spatial buckling in tubing [J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[13] QIAN Zhi-hui, ZHOU Liang, REN Lei, REN Lu-quan. Completely passive walking machine with bionic subtalar joint and matatarsal phalangeal joint [J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[14] GE Chang-jiang, YE Hui, HU Xing-jun, YU Zheng-lei. Prediction and control of trailing edge noise on owl wings [J]. 吉林大学学报(工学版), 2016, 46(6): 1981-1986.
[15] LI Meng, SU Yi-nao, SUN You-hong, GAO Ke. High matrix bionic abnormal shape impregnated diamond bit [J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!