Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (1): 53-65.doi: 10.13229/j.cnki.jdxbgxb20181272

Previous Articles     Next Articles

Telescoping path optimization of a single-cylinder pin⁃type multi⁃section boom based on Hopfield neural network

Yan MAO(),Kai CHENG()   

  1. College of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
  • Received:2018-12-25 Online:2020-01-01 Published:2020-02-06
  • Contact: Kai CHENG E-mail:maoyanduo@126.com;chengkai@jlu.edu.cn

Abstract:

The issue of Telescoping Path Optimization (TPO) of Single-cylinder Pin-type Multi-section Boom (SPMB) was raised and its model is proposed by using Hopfield Neural Network (HNN). In an energy equation, it is difficult to balance the parameter λ of constrained term and the parameter γ of objective term. When λ dominates, network converges toward constraint satisfaction and a valid solution is often of poor quality. Whereas when γ dominates, network might converge to an invalid solution. To solve this problem, this paper proposes that the λ is gradient rising and the γ is gradient falling. A PID hybridized method based on Constraint Boundary Gap (CBG) control is presented to adaptively regulate the increments of λ and γ. Experimental results show that the telescoping efficiency improves 10%~30% after path optimization. TPO model achieves good optimization effect, and enables network converge almost 100% to a valid solution. The generation proportion of the optimal solution remains high at about 50% seeing that PID control often imposes a solution to the constraint boundary.

Key words: mechanical design, Hopfield neural network, single-cylinder pin-type multi-section boom, telescoping path optimization, proportional integral derivative(PID) controller

CLC Number: 

  • TH213

Fig.1

Principle of boom length denotation"

Table 1

Comparison of optimized paths with un?optimized paths"

步数 实例A 实例B
未优化 臂节 优化后 臂节 未优化 臂节 优化后 臂节
0 1 4 4 1 1 —— 1 4 4 1 1 —— 2 2 2 2 2 —— 2 2 2 2 2 ——
1 1 1 4 1 1 II 1 1 4 1 1 II 1 2 2 2 2 I 1 2 2 2 2 I
2 1 1 1 1 1 III 1 1 2 1 1 III 1 1 2 2 2 II 1 1 2 2 2 II
3 1 1 1 1 2 V 1 1 2 1 2 V 1 1 1 2 2 III 1 1 2 1 2 IV
4 1 1 1 2 2 IV 1 1 2 2 2 IV 1 1 1 1 2 IV 2 1 2 1 2 I
5 1 1 2 2 2 III 1 2 2 2 2 II 1 1 2 1 2 III
6 1 2 2 2 2 II 2 2 2 2 2 I 2 1 2 1 2 I
7 2 2 2 2 2 I

Table 2

Parameter settings of three kinds of curves"

HNN γ参数恒定,γ=常数 HNN γ定常数衰减;Δγ= Kγ ·γ(t) HNN γ PID;Δγ见式(5)
B=5, C=5 B=5, C=5 B=5, C=5
μ=μγ = 0.000 1 μλ =μγ =0.000 1 μλ =μγ =0.000 1
K p λ =10,K i λ =0.1,K d λ =1 K p λ =10,K i λ =0.1,K d λ =1 K p λ =10,K i λ =0.1,K d λ =1
γ=[1010101010] Kγ =10 K p γ =0.1,K i γ =0.01, K d γ =1
λ(0)=0 λ(0)=0,γ(0)=1 000 λ(0)=0,γ(0)=1 000

Fig.2

Telescoping processes by TPO from initial state A=[2 2 2 2 2] to target state T=[2 1 2 1 2]"

Table 3

Comparison of three kinds of settings of γ "

数 据 最优 RBC 步数/路径 类型 3种γ取值类型
常数 增量 PID

A =[32321], T =

[12222]

V =[11122], V =

[11121]

6/3.6

6/3.6

无效 4 1 0
有效 21 21 20
最优 5 8 10

A =[22222], T =

[21212]

V =[21112], V =

[11212]

4/1.8

4/1.8

无效 5 6 0
有效 17 16 21
最优 8 8 9

A =[22223], T =

[12222]

V =[11113], V =

[11112]

8/3.6

8/3.6

无效 0 0 0
有效 10 5 7
最优 20 25 23

A =[21212], T =

[23221]

V =[11211], V =

[11212]

5/2.7

5/2.7

无效 1 0 0
有效 17 17 15
最优 12 13 15

A =[22331], T =

[12222]

V =[11122], V =

[11121]

7/3.6

7/3.6

无效 21 11 0
有效 2 8 17
最优 7 11 13

A =[21331], T =

[12222]

V =[11121], V =

[11122]

6/3.15

6/3.15

无效 23 12 0
有效 2 7 17
最优 5 11 13
平均无效解/% 0.300 0.167 0
平均有效解/% 0.384 0.410 0.539
平均最优解/% 0.316 0.423 0.461

Fig.3

"

Table 4

Comparison of three kinds of algorithms (data 1)"

工 况

算 法

n=5, A =[21212]

T =[23221]

n=6, A =[212121]

T =[233221]

n=8, A =[21212121]

T =[23333221]

n=10, A =[2121212121]

T =[2333333221]

有效解比

/最优解比

t/s

有效解比

/最优解比

t/s

有效解比

/最优解比

t/s

有效解比

/最优解比

t/s
排列组合

100%

/100%

0.012

100%

/100%

0.012

100%

/100%

0.036

100%

/100%

0.168
动态规划

100%

/100%

0.053

100%

/100%

0.059 - - - -
HNN

90%

/50%

0.519

90%

/40%

0.640

80%

/30%

0.641

80%

/10%

0.632

Table 5

Comparison of three kinds of algorithms (data 2)"

工 况

算 法

n=5, A =[22222]

T =[21212]

n=6, A =[222222]

T =[212121]

n=6, A =[22222222]

T =[21212121]

n=10, A =[2222222222]

T =[2121212121]

有效解比

/最优解比

t/s

有效解比

/最优解比

t/s 有效解比 t/s

有效解比

/最优解比

t/s
排列组合

100%

/100%

0.014

100%

/100%

0.014

100%

/100%

0.016

100%

/100%

0.035
动态规划

100%

/100%

0.053

100%

/100%

0.059 -- -- -- --
HNN

100%

/30%

0.634

90%

/80%

0.639

100%

/80%

0.635

90%

/60%

0.637
1 Zhan Chun-xin , Liu Quan , Guo Ji-mei , et al . Single-cylinder pin-type telescopic boom track optimized control method and control system[P]. WO/ 2011/038633, 2011-07-04.
2 毛艳, 成凯 . 一种高效的单缸插销式多级顺序伸缩路径优化方法[P]. 中国:CN 106744389B, 2018-07-17.
3 毛艳, 成凯 . 单缸插销式多级顺序伸缩路径优化方法 [P].中国:CN 106744386B, 2018-04-10.
4 郑飞 . 动态规划法在服装运输车辆路径优化中的应用 研究[J]. 物流科技, 2016, 39(2): 78-82.
Zheng Fei . Research on the application of dynamic programming method in the optimization of apparel vehicle routing[J]. Logistics Sci-Tech, 2016, 39(2): 78-82.
5 Wen U P , Lan K M , Shih H S . A review of hopfield neural networks for solving mathematical programming problems[J]. European Journal of Operational Research, 2009, 198(3): 675-687.
6 Hopfield J J . Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences, 1982, 79(8): 2554-2558.
7 Hopfield J J , Tank D W . ‘Neural’ computation of decisions in optimization problems[J]. Biological Cybernetics, 1985, 52(3): 141-152.
8 Wilson G V , Pawley G S . On the stability of the travelling salesman problem algorithm of Hopfield and tank[J]. Biological Cybernetics, 1988, 58(1): 63-70.
9 Kennedy M P , Chua L O . Neural networks for nonlinear programming[J]. IEEE Transactions on Circuits & Systems, 1988, 35(5): 554-562.
10 Rodriguez-Vazquez A , Rueda A , Huertas J L , et al . Switched-capacitor neural networks for linear programming[J]. Electronics Letters, 2002, 24(8): 496-498.
11 Brandt R D , Yao W , Laub A J , et al . Alternative networks for solving the traveling salesman problem and the list-matching problem[C]∥International Conference on Neural Networks, San Diego, CA, USA, 1988: 333-340.
12 Protzel P W , Palumbo D L , Arras M K . Performance and fault-tolerance of neural networks for optimization[J]. IEEE Transactions on Neural Networks, 1993, 4(4): 600-614.
13 Shirazi B , Yih S . Critical analysis of applying hopfield neural net model to optimization problems[C]∥IEEE International Conference on Systems, Man and Cybernetics, Cambridge,MA,USA, 1989: 210-215.
14 Aiyer S V B , Niranjan M , Fallside F . A theoretical investigation into the performance of the Hopfield model[J]. IEEE Transactions on Neural Networks, 1990, 1(2): 204-215.
15 孙守宇, 郑君里 . Hopfield 网络求解 TSP的一种改进 算法和理论证明[J]. 电子学报, 1995, 23(1): 73-78.
Sun Shou-yu , Zheng Jun-li . A modified algorithm and theoretical analysis for hopfield network solving TSP[J]. Acta Electronica Sinica, 1995, 23(1): 73-78.
16 张军英, 许进, 保铮 . 神经网络求解TSP问题的理论分析及其改进[J]. 西安电子科技大学学报, 1996, (增刊1): 88-98.
Zhang Jun-ying , Xu Jin , Bao Zheng . Theoretical analysis and improvement of the neural network to solve the TSP problem[J]. Journal of Xidian University, 1996(Sup.1): 88-98.
17 Effati S , Jafarzadeh M . A new nonlinear neural network for solving a class of constrained parametric optimization problems[J]. Applied Mathematics & Computation, 2007, 186(1): 814-819.
18 Lemonge A C C , Barbosa H J C , Bernardino H S . Variants of an adaptive penalty scheme for steady-state genetic algorithms in engineering optimization[J]. Engineering Computations, 2015, 32(8): 2182-2215.
19 Schoenauer M , Michalewicz Z . Boundary operators for constrained optimization problems[C]∥Baeck T, ed. Proceedings of the 7th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1997. 322-329.
20 Wang Y , Cai Z , Guo G , et al . Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2007: 37(3): 560-575.
[1] Fu-chun JIA,Xian-jie MENG,Yu-long LEI. Optimal design of two degrees of freedom dynamic vibration absorber based on multi-objective genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1969-1976.
[2] Zhi-jiang XIE,Kun WANG,Yang-jun PI,Xiao-yong WU,Ying-wei GUO. Novel method for forward kinematics of 6⁃PSSparallel manipulator [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1977-1985.
[3] Chang-you MA, Hai-bo GAO, Liang DING, Hai-tao YU, Hong-jun XING, Zong-quan DENG. Mechanism design and docking strategy forend⁃effectors exchange of robot [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2027-2037.
[4] Jun-ye LI,Yang LIU,Hui LU,Wen-qing MENG,Zhao-jun YANG,Xin-ming ZHANG. Numerical analysis of single crystal Fe with abrasive grain micro-cutting based on molecular dynamics [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1567-1574.
[5] En-guo CAO,Kun LIU,Shuo JI,Zhen-yuan SUN,Hong-wei XU,Xing-ji LUO. Mechanical structure design and optimization of weight-support STS rehabilitation training system [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1558-1566.
[6] Cheng YANG,Yong⁃sheng ZHAO,Zhi⁃feng LIU,Li⁃gang CAI. Stiffness model of bolted joint based on multi⁃scale theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1212-1220.
[7] Jia⁃xu WANG,Xiao⁃kang NI,Yan⁃feng HAN,Guo XIANG,Ke XIAO. Numerical model of mixed lubrication for microgroove bearing considering axial reciprocating motion [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 888-896.
[8] Xing⁃ye WANG,Jin⁃qiu ZHANG,Guo⁃qiang LI,Zhi⁃zhao PENG. Influence of inertial mass on rack and pinion actuator′s damping characteristic [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 881-887.
[9] Kun LIU,Shuo JI,Zhen⁃yuan SUN,Hong⁃wei XU,Yong LIU,Jing⁃xia ZHAO. Mechanical structure design and optimization of multifunctional auxiliary toilet wheelchair [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 872-880.
[10] BI Qiu-shi,WANG Guo-qiang,HUANG Ting-ting,MAO Rui,LU Yan-peng. Tooth strength analysis of mineral sizer by coupling discrete element method and finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1770-1776.
[11] ZHU Wei,WANG Chuan-wei,GU Kai-rong,SHEN Hui-ping,XU Ke,WANG Yuan. Stiffness and dynamics analysis of a new type of tensegrity parallel mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1777-1786.
[12] LIU Jian-fang, WANG Ji-bo, LIU Guo-jun, LI Xin-bo, LIANG Shi-hai, YANG Zhi-gang. PMMA micromixer embedded with 3D channel based on piezoelectric actuation [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1500-1507.
[13] XIE Chuan-liu, TANG Fang-ping, SUN Dan-dan, ZHANG Wen-peng, XIA Ye, DUAN Xiao-hui. Model experimental analysis of pressure pulsation in vertical mixed-flow pump system [J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[14] WANG Tao, SAN Xiao-gang, GAO Shi-jie, WANG Hui-xian, WANG Jing, NI Ying-xue. Dynamic characteristics of vertical shaft system of photoelectric turntable [J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[15] HE Ji-lin, CHEN Yi-long, WU Kang, ZHAO Yu-ming, WANG Zhi-jie, CHEN Zhi-wei. Energy flow analysis of crane hoisting system and experiment of potential energy recovery system [J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!